Suppr超能文献

基于迪杰斯特拉方法的定位不确定环境中的路径规划

Path Planning in Localization Uncertaining Environment Based on Dijkstra Method.

作者信息

Wang Can, Cheng Chensheng, Yang Dianyu, Pan Guang, Zhang Feihu

机构信息

School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an, China.

出版信息

Front Neurorobot. 2022 Mar 11;16:821991. doi: 10.3389/fnbot.2022.821991. eCollection 2022.

Abstract

Path planning obtains the trajectory from one point to another with the robot's kinematics model and environment understanding. However, as the localization uncertainty through the odometry sensors is inevitably affected, the position of the moving path will deviate further and further compared to the original path, which leads to path drift in GPS denied environments. This article proposes a novel path planning algorithm based on Dijkstra to address such issues. By combining statistical characteristics of localization error caused by dead-reckoning, the replanned path with minimum cumulative error is generated with uniforming distribution in the searching space. The simulation verifies the effectiveness of the proposed algorithm. In a real scenario with measurement noise, the results of the proposed algorithm effectively reduce cumulative error compared to the results of the conventional planning algorithm.

摘要

路径规划利用机器人的运动学模型和环境感知从一个点获取到另一个点的轨迹。然而,由于里程计传感器不可避免地会受到定位不确定性的影响,与原始路径相比,移动路径的位置会越来越偏离,这导致在GPS信号缺失的环境中出现路径漂移。本文提出了一种基于迪杰斯特拉算法的新型路径规划算法来解决此类问题。通过结合航位推算引起的定位误差的统计特征,在搜索空间中以均匀分布生成具有最小累积误差的重新规划路径。仿真验证了所提算法的有效性。在存在测量噪声的实际场景中,与传统规划算法的结果相比,所提算法的结果有效降低了累积误差。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/11cf/8963180/c2380e37dc98/fnbot-16-821991-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验