Suppr超能文献

基于改进麻雀搜索算法的时间最优轨迹规划

Time Optimal Trajectory Planing Based on Improved Sparrow Search Algorithm.

作者信息

Zhang Xiaofeng, Xiao Fan, Tong XiLiang, Yun Juntong, Liu Ying, Sun Ying, Tao Bo, Kong Jianyi, Xu Manman, Chen Baojia

机构信息

Key Laboratory of Metallurgical Equipment and Control Technology of Ministry of Education, Wuhan University of Science and Technology, Wuhan, China.

Research Center for Biomimetic Robot and Intelligent Measurement and Control, Wuhan University of Science and Technology, Wuhan, China.

出版信息

Front Bioeng Biotechnol. 2022 Mar 22;10:852408. doi: 10.3389/fbioe.2022.852408. eCollection 2022.

Abstract

Complete trajectory planning includes path planning, inverse solution solving and trajectory optimization. In this paper, a highly smooth and time-saving approach to trajectory planning is obtained by improving the kinematic and optimization algorithms for the time-optimal trajectory planning problem. By partitioning the joint space, the paper obtains an inverse solution calculation based on the partitioning of the joint space, saving 40% of the inverse kinematics solution time. This means that a large number of computational resources can be saved in trajectory planning. In addition, an improved sparrow search algorithm (SSA) is proposed to complete the solution of the time-optimal trajectory. A Tent chaotic mapping was used to optimize the way of generating initial populations. The algorithm was further improved by combining it with an adaptive step factor. The experiments demonstrated the performance of the improved SSA. The robot's trajectory is further optimized in time by an improved sparrow search algorithm. Experimental results show that the method can improve convergence speed and global search capability and ensure smooth trajectories.

摘要

完整的轨迹规划包括路径规划、逆解求解和轨迹优化。本文通过改进时间最优轨迹规划问题的运动学和优化算法,获得了一种高度平滑且省时的轨迹规划方法。通过对关节空间进行划分,本文获得了基于关节空间划分的逆解计算方法,节省了40%的逆运动学求解时间。这意味着在轨迹规划中可以节省大量的计算资源。此外,提出了一种改进的麻雀搜索算法(SSA)来完成时间最优轨迹的求解。采用帐篷混沌映射优化初始种群的生成方式。通过结合自适应步长因子对算法进行了进一步改进。实验验证了改进后的SSA的性能。通过改进的麻雀搜索算法,机器人的轨迹在时间上得到了进一步优化。实验结果表明,该方法能够提高收敛速度和全局搜索能力,并确保轨迹平滑。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37d8/8981035/27e53c8a09c8/fbioe-10-852408-g001.jpg

相似文献

1
Time Optimal Trajectory Planing Based on Improved Sparrow Search Algorithm.
Front Bioeng Biotechnol. 2022 Mar 22;10:852408. doi: 10.3389/fbioe.2022.852408. eCollection 2022.
2
3
A Tandem Robotic Arm Inverse Kinematic Solution Based on an Improved Particle Swarm Algorithm.
Front Bioeng Biotechnol. 2022 May 19;10:832829. doi: 10.3389/fbioe.2022.832829. eCollection 2022.
4
Application of Improved Sparrow Search Algorithm to Path Planning of Mobile Robots.
Biomimetics (Basel). 2024 Jun 11;9(6):351. doi: 10.3390/biomimetics9060351.
5
Design and application of improved sparrow search algorithm based on sine cosine and firefly perturbation.
Math Biosci Eng. 2022 Aug 10;19(11):11422-11452. doi: 10.3934/mbe.2022533.
6
Robotic arm trajectory optimization based on multiverse algorithm.
Math Biosci Eng. 2023 Jan;20(2):2776-2792. doi: 10.3934/mbe.2023130. Epub 2022 Nov 30.
8
Energy-saving optimization of the parallel chillers system based on a multi-strategy improved sparrow search algorithm.
Heliyon. 2023 Oct 17;9(10):e21012. doi: 10.1016/j.heliyon.2023.e21012. eCollection 2023 Oct.
9
A Modified Sparrow Search Algorithm with Application in 3d Route Planning for UAV.
Sensors (Basel). 2021 Feb 9;21(4):1224. doi: 10.3390/s21041224.
10
Dynamic Path Planning of Mobile Robot Based on Improved Sparrow Search Algorithm.
Biomimetics (Basel). 2023 Apr 27;8(2):182. doi: 10.3390/biomimetics8020182.

引用本文的文献

1
A Gaussian convolutional optimization algorithm with tent chaotic mapping.
Sci Rep. 2024 Dec 28;14(1):31027. doi: 10.1038/s41598-024-82277-y.
2
Local Path Planning for Mobile Robots Based on Fuzzy Dynamic Window Algorithm.
Sensors (Basel). 2023 Oct 5;23(19):8260. doi: 10.3390/s23198260.
4
Traffic flow prediction using bi-directional gated recurrent unit method.
Urban Inform. 2022;1(1):16. doi: 10.1007/s44212-022-00015-z. Epub 2022 Dec 1.
5
Multi-Objective Location and Mapping Based on Deep Learning and Visual Slam.
Sensors (Basel). 2022 Oct 6;22(19):7576. doi: 10.3390/s22197576.
6
7
Real-Time Target Detection Method Based on Lightweight Convolutional Neural Network.
Front Bioeng Biotechnol. 2022 Aug 16;10:861286. doi: 10.3389/fbioe.2022.861286. eCollection 2022.
8
Surface Defect Segmentation Algorithm of Steel Plate Based on Geometric Median Filter Pruning.
Front Bioeng Biotechnol. 2022 Jul 1;10:945248. doi: 10.3389/fbioe.2022.945248. eCollection 2022.
9
Path Planning Optimization of Intelligent Vehicle Based on Improved Genetic and Ant Colony Hybrid Algorithm.
Front Bioeng Biotechnol. 2022 Jul 1;10:905983. doi: 10.3389/fbioe.2022.905983. eCollection 2022.
10
Multi-Objective Optimization Design of Ladle Refractory Lining Based on Genetic Algorithm.
Front Bioeng Biotechnol. 2022 Jun 15;10:900655. doi: 10.3389/fbioe.2022.900655. eCollection 2022.

本文引用的文献

1
Real-Time Target Detection Method Based on Lightweight Convolutional Neural Network.
Front Bioeng Biotechnol. 2022 Aug 16;10:861286. doi: 10.3389/fbioe.2022.861286. eCollection 2022.
2
Advances in Sparrow Search Algorithm: A Comprehensive Survey.
Arch Comput Methods Eng. 2023;30(1):427-455. doi: 10.1007/s11831-022-09804-w. Epub 2022 Aug 22.
3
A Tandem Robotic Arm Inverse Kinematic Solution Based on an Improved Particle Swarm Algorithm.
Front Bioeng Biotechnol. 2022 May 19;10:832829. doi: 10.3389/fbioe.2022.832829. eCollection 2022.
4
Low-Illumination Image Enhancement Algorithm Based on Improved Multi-Scale Retinex and ABC Algorithm Optimization.
Front Bioeng Biotechnol. 2022 Apr 11;10:865820. doi: 10.3389/fbioe.2022.865820. eCollection 2022.
5
Photoelastic Stress Field Recovery Using Deep Convolutional Neural Network.
Front Bioeng Biotechnol. 2022 Mar 21;10:818112. doi: 10.3389/fbioe.2022.818112. eCollection 2022.
6
Attitude Stabilization Control of Autonomous Underwater Vehicle Based on Decoupling Algorithm and PSO-ADRC.
Front Bioeng Biotechnol. 2022 Feb 28;10:843020. doi: 10.3389/fbioe.2022.843020. eCollection 2022.
7
Self-Tuning Control of Manipulator Positioning Based on Fuzzy PID and PSO Algorithm.
Front Bioeng Biotechnol. 2022 Feb 11;9:817723. doi: 10.3389/fbioe.2021.817723. eCollection 2021.
8
Genetic-Based Optimization of 3D Burch-Schneider Cage With Functionally Graded Lattice Material.
Front Bioeng Biotechnol. 2022 Jan 26;10:819005. doi: 10.3389/fbioe.2022.819005. eCollection 2022.
9
Intelligent Detection of Steel Defects Based on Improved Split Attention Networks.
Front Bioeng Biotechnol. 2022 Jan 13;9:810876. doi: 10.3389/fbioe.2021.810876. eCollection 2021.
10
Genetic Algorithm-Based Trajectory Optimization for Digital Twin Robots.
Front Bioeng Biotechnol. 2022 Jan 10;9:793782. doi: 10.3389/fbioe.2021.793782. eCollection 2021.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验