Suppr超能文献

时间序列转录组比较揭示了大豆(Glycine max)根系盐胁迫下的基因调控网络。

Time-series transcriptome comparison reveals the gene regulation network under salt stress in soybean (Glycine max) roots.

作者信息

Hu Junmei, Zhuang Yongbin, Li Xianchong, Li Xiaoming, Sun Chanchan, Ding Zhaojun, Xu Ran, Zhang Dajian

机构信息

College of Agronomy, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, Shandong, China.

College of Life Sciences, Yantai University, Yan'tai, 264005, Shandong, China.

出版信息

BMC Plant Biol. 2022 Mar 31;22(1):157. doi: 10.1186/s12870-022-03541-9.

Abstract

BACKGROUND

Soil salinity is a primary factor limiting soybean (Glycine max) productivity. Breeding soybean for tolerance to high salt conditions is therefore critical for increasing yield. To explore the molecular mechanism of soybean responses to salt stress, we performed a comparative transcriptome time-series analysis of root samples collected from two soybean cultivars with contrasting salt sensitivity.

RESULTS

The salt-tolerant cultivar 'Qi Huang No.34' (QH34) showed more differential expression of genes than the salt-sensitive cultivar 'Dong Nong No.50' (DN50). We identified 17,477 genes responsive to salt stress, of which 6644 exhibited distinct expression differences between the two soybean cultivars. We constructed the corresponding co-expression network and performed Gene Ontology term and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis. The results suggested that phytohormone signaling, oxidoreduction, phenylpropanoid biosynthesis, the mitogen-activated protein kinase pathway and ribosome metabolism may play crucial roles in response to salt stress.

CONCLUSIONS

Our comparative analysis offers a comprehensive understanding of the genes involved in responding to salt stress and maintaining cell homeostasis in soybean. The regulatory gene networks constructed here also provide valuable molecular resources for future functional studies and breeding of soybean with improved tolerance to salinity.

摘要

背景

土壤盐分是限制大豆(Glycine max)生产力的主要因素。因此,培育耐高盐条件的大豆品种对于提高产量至关重要。为了探究大豆对盐胁迫响应的分子机制,我们对从两个盐敏感性不同的大豆品种采集的根系样本进行了比较转录组时间序列分析。

结果

耐盐品种‘齐黄34’(QH34)比盐敏感品种‘东农50’(DN50)表现出更多的基因差异表达。我们鉴定出17477个对盐胁迫有响应的基因,其中6644个在两个大豆品种间表现出明显的表达差异。我们构建了相应的共表达网络,并进行了基因本体论术语和京都基因与基因组百科全书通路富集分析。结果表明,植物激素信号传导、氧化还原、苯丙烷生物合成、丝裂原活化蛋白激酶途径和核糖体代谢可能在响应盐胁迫中起关键作用。

结论

我们的比较分析为大豆中参与响应盐胁迫和维持细胞稳态的基因提供了全面的理解。这里构建的调控基因网络也为未来大豆耐盐性功能研究和育种提供了有价值的分子资源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f606/8969339/263c59d3d4fd/12870_2022_3541_Fig1_HTML.jpg

相似文献

6
Transcriptional analyses of two soybean cultivars under salt stress.
Mol Biol Rep. 2020 Apr;47(4):2871-2888. doi: 10.1007/s11033-020-05398-3. Epub 2020 Mar 29.
8
Transcriptome response of roots to salt stress in a salinity-tolerant bread wheat cultivar.
PLoS One. 2019 Mar 15;14(3):e0213305. doi: 10.1371/journal.pone.0213305. eCollection 2019.
9
Transcriptome analysis of genes and pathways associated with salt tolerance in alfalfa under non-uniform salt stress.
Plant Physiol Biochem. 2020 Jun;151:323-333. doi: 10.1016/j.plaphy.2020.03.035. Epub 2020 Mar 30.
10
Transcriptome analysis of grapevine under salinity and identification of key genes responsible for salt tolerance.
Funct Integr Genomics. 2019 Jan;19(1):61-73. doi: 10.1007/s10142-018-0628-6. Epub 2018 Jul 19.

引用本文的文献

3
Using WGCNA and transcriptome profiling to identify hub genes for salt stress tolerance in germinating soybean seeds.
Front Plant Sci. 2025 Aug 8;16:1569565. doi: 10.3389/fpls.2025.1569565. eCollection 2025.
5
Unlocking gene regulatory networks for crop resilience and sustainable agriculture.
Nat Biotechnol. 2025 Jul 2. doi: 10.1038/s41587-025-02727-4.
8
9
Recent advances in exploring transcriptional regulatory landscape of crops.
Front Plant Sci. 2024 Jun 5;15:1421503. doi: 10.3389/fpls.2024.1421503. eCollection 2024.

本文引用的文献

1
Pedigree-based genetic dissection of quantitative loci for seed quality and yield characters in improved soybean.
Mol Breed. 2021 Feb 6;41(2):14. doi: 10.1007/s11032-021-01211-6. eCollection 2021 Feb.
2
Nuclear factor Y subunit GmNFYA competes with GmHDA13 for interaction with GmFVE to positively regulate salt tolerance in soybean.
Plant Biotechnol J. 2021 Nov;19(11):2362-2379. doi: 10.1111/pbi.13668. Epub 2021 Aug 2.
3
Regulation of Plant Responses to Salt Stress.
Int J Mol Sci. 2021 Apr 28;22(9):4609. doi: 10.3390/ijms22094609.
4
A Golgi-Localized Sodium/Hydrogen Exchanger Positively Regulates Salt Tolerance by Maintaining Higher K/Na Ratio in Soybean.
Front Plant Sci. 2021 Mar 9;12:638340. doi: 10.3389/fpls.2021.638340. eCollection 2021.
5
GmAKT1 is involved in K uptake and Na/K homeostasis in Arabidopsis and soybean plants.
Plant Sci. 2021 Mar;304:110736. doi: 10.1016/j.plantsci.2020.110736. Epub 2020 Nov 4.
7
A soybean calcineurin B-like protein-interacting protein kinase, GmPKS4, regulates plant responses to salt and alkali stresses.
J Plant Physiol. 2021 Jan;256:153331. doi: 10.1016/j.jplph.2020.153331. Epub 2020 Nov 27.
8
How Plant Hormones Mediate Salt Stress Responses.
Trends Plant Sci. 2020 Nov;25(11):1117-1130. doi: 10.1016/j.tplants.2020.06.008. Epub 2020 Jul 13.
9
Ribosome Collisions Trigger General Stress Responses to Regulate Cell Fate.
Cell. 2020 Jul 23;182(2):404-416.e14. doi: 10.1016/j.cell.2020.06.006. Epub 2020 Jun 30.
10
The Soybean Transcription Factor Gene Confers Drought and Salt Resistances in Transgenic Plants.
Int J Mol Sci. 2020 Jan 20;21(2):670. doi: 10.3390/ijms21020670.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验