Hu Junmei, Zhuang Yongbin, Li Xianchong, Li Xiaoming, Sun Chanchan, Ding Zhaojun, Xu Ran, Zhang Dajian
College of Agronomy, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
College of Life Sciences, Yantai University, Yan'tai, 264005, Shandong, China.
BMC Plant Biol. 2022 Mar 31;22(1):157. doi: 10.1186/s12870-022-03541-9.
Soil salinity is a primary factor limiting soybean (Glycine max) productivity. Breeding soybean for tolerance to high salt conditions is therefore critical for increasing yield. To explore the molecular mechanism of soybean responses to salt stress, we performed a comparative transcriptome time-series analysis of root samples collected from two soybean cultivars with contrasting salt sensitivity.
The salt-tolerant cultivar 'Qi Huang No.34' (QH34) showed more differential expression of genes than the salt-sensitive cultivar 'Dong Nong No.50' (DN50). We identified 17,477 genes responsive to salt stress, of which 6644 exhibited distinct expression differences between the two soybean cultivars. We constructed the corresponding co-expression network and performed Gene Ontology term and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis. The results suggested that phytohormone signaling, oxidoreduction, phenylpropanoid biosynthesis, the mitogen-activated protein kinase pathway and ribosome metabolism may play crucial roles in response to salt stress.
Our comparative analysis offers a comprehensive understanding of the genes involved in responding to salt stress and maintaining cell homeostasis in soybean. The regulatory gene networks constructed here also provide valuable molecular resources for future functional studies and breeding of soybean with improved tolerance to salinity.
土壤盐分是限制大豆(Glycine max)生产力的主要因素。因此,培育耐高盐条件的大豆品种对于提高产量至关重要。为了探究大豆对盐胁迫响应的分子机制,我们对从两个盐敏感性不同的大豆品种采集的根系样本进行了比较转录组时间序列分析。
耐盐品种‘齐黄34’(QH34)比盐敏感品种‘东农50’(DN50)表现出更多的基因差异表达。我们鉴定出17477个对盐胁迫有响应的基因,其中6644个在两个大豆品种间表现出明显的表达差异。我们构建了相应的共表达网络,并进行了基因本体论术语和京都基因与基因组百科全书通路富集分析。结果表明,植物激素信号传导、氧化还原、苯丙烷生物合成、丝裂原活化蛋白激酶途径和核糖体代谢可能在响应盐胁迫中起关键作用。
我们的比较分析为大豆中参与响应盐胁迫和维持细胞稳态的基因提供了全面的理解。这里构建的调控基因网络也为未来大豆耐盐性功能研究和育种提供了有价值的分子资源。