Suppr超能文献

预测德克萨斯州学术医疗系统收治的 COVID-19 患者住院期间需要强化氧补充的需求:一项回顾性队列研究和多变量回归模型。

Prediction of the need for intensive oxygen supplementation during hospitalisation among subjects with COVID-19 admitted to an academic health system in Texas: a retrospective cohort study and multivariable regression model.

机构信息

School of Public and Population Health Sciences, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA

School of Medicine, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA.

出版信息

BMJ Open. 2022 Mar 31;12(3):e058238. doi: 10.1136/bmjopen-2021-058238.

Abstract

OBJECTIVE

SARS-CoV-2 has caused a pandemic claiming more than 4 million lives worldwide. Overwhelming COVID-19 respiratory failure placed tremendous demands on healthcare systems increasing the death toll. Cost-effective prognostic tools to characterise the likelihood of patients with COVID-19 to progress to severe hypoxemic respiratory failure are still needed.

DESIGN

We conducted a retrospective cohort study to develop a model using demographic and clinical data collected in the first 12 hours of admission to explore associations with severe hypoxemic respiratory failure in unvaccinated and hospitalised patients with COVID-19.

SETTING

University-based healthcare system including six hospitals located in the Galveston, Brazoria and Harris counties of Texas.

PARTICIPANTS

Adult patients diagnosed with COVID-19 and admitted to one of six hospitals between 19 March and 30 June 2020.

PRIMARY OUTCOME

The primary outcome was defined as reaching a WHO ordinal scale between 6 and 9 at any time during admission, which corresponded to severe hypoxemic respiratory failure requiring high-flow oxygen supplementation or mechanical ventilation.

RESULTS

We included 329 participants in the model cohort and 62 (18.8%) met the primary outcome. Our multivariable regression model found that lactate dehydrogenase (OR 2.36), Quick Sequential Organ Failure Assessment score (OR 2.26) and neutrophil to lymphocyte ratio (OR 1.15) were significant predictors of severe disease. The final model showed an area under the curve of 0.84. The sensitivity analysis and point of influence analysis did not reveal inconsistencies.

CONCLUSIONS

Our study suggests that a combination of accessible demographic and clinical information collected on admission may predict the progression to severe COVID-19 among adult patients with mild and moderate disease. This model requires external validation prior to its use.

摘要

目的

SARS-CoV-2 已在全球范围内造成超过 400 万人死亡的大流行。COVID-19 导致的呼吸衰竭使医疗系统不堪重负,导致死亡人数增加。目前仍需要具有成本效益的预后工具来描述 COVID-19 患者发生严重低氧性呼吸衰竭的可能性。

设计

我们进行了一项回顾性队列研究,使用在入院后 12 小时内收集的人口统计学和临床数据来建立一个模型,以探索与未接种疫苗且住院的 COVID-19 患者发生严重低氧性呼吸衰竭的关联。

地点

位于德克萨斯州加尔维斯顿、布拉佐里亚和哈里斯县的 6 家医院的大学医疗系统。

参与者

2020 年 3 月 19 日至 6 月 30 日期间在 6 家医院之一被诊断患有 COVID-19 并入院的成年患者。

主要结局

主要结局定义为在任何时间达到 WHO 等级量表的 6-9 级,这对应于需要高流量氧气补充或机械通气的严重低氧性呼吸衰竭。

结果

我们在模型队列中纳入了 329 名参与者,其中 62 名(18.8%)达到了主要结局。我们的多变量回归模型发现,乳酸脱氢酶(OR 2.36)、快速序贯器官衰竭评估评分(OR 2.26)和中性粒细胞与淋巴细胞比值(OR 1.15)是严重疾病的显著预测因子。最终模型的曲线下面积为 0.84。敏感性分析和影响点分析未显示不一致。

结论

我们的研究表明,入院时收集的可及的人口统计学和临床信息的组合可能可以预测轻度和中度疾病的成年 COVID-19 患者向严重疾病的进展。在使用该模型之前,需要进行外部验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/77c3/8971360/1363c295e342/bmjopen-2021-058238f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验