CHU Bordeaux, 33600, Pessac, France.
Univ. Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, 33600, Bordeaux, France.
Eur Radiol. 2023 Dec;33(12):9262-9274. doi: 10.1007/s00330-023-09759-x. Epub 2023 Jul 5.
COVID-19 pandemic seems to be under control. However, despite the vaccines, 5 to 10% of the patients with mild disease develop moderate to critical forms with potential lethal evolution. In addition to assess lung infection spread, chest CT helps to detect complications. Developing a prediction model to identify at-risk patients of worsening from mild COVID-19 combining simple clinical and biological parameters with qualitative or quantitative data using CT would be relevant to organizing optimal patient management.
Four French hospitals were used for model training and internal validation. External validation was conducted in two independent hospitals. We used easy-to-obtain clinical (age, gender, smoking, symptoms' onset, cardiovascular comorbidities, diabetes, chronic respiratory diseases, immunosuppression) and biological parameters (lymphocytes, CRP) with qualitative or quantitative data (including radiomics) from the initial CT in mild COVID-19 patients.
Qualitative CT scan with clinical and biological parameters can predict which patients with an initial mild presentation would develop a moderate to critical form of COVID-19, with a c-index of 0.70 (95% CI 0.63; 0.77). CT scan quantification improved the performance of the prediction up to 0.73 (95% CI 0.67; 0.79) and radiomics up to 0.77 (95% CI 0.71; 0.83). Results were similar in both validation cohorts, considering CT scans with or without injection.
Adding CT scan quantification or radiomics to simple clinical and biological parameters can better predict which patients with an initial mild COVID-19 would worsen than qualitative analyses alone. This tool could help to the fair use of healthcare resources and to screen patients for potential new drugs to prevent a pejorative evolution of COVID-19.
NCT04481620.
CT scan quantification or radiomics analysis is superior to qualitative analysis, when used with simple clinical and biological parameters, to determine which patients with an initial mild presentation of COVID-19 would worsen to a moderate to critical form.
• Qualitative CT scan analyses with simple clinical and biological parameters can predict which patients with an initial mild COVID-19 and respiratory symptoms would worsen with a c-index of 0.70. • Adding CT scan quantification improves the performance of the clinical prediction model to an AUC of 0.73. • Radiomics analyses slightly improve the performance of the model to a c-index of 0.77.
新冠疫情似乎得到了控制。然而,尽管有了疫苗,仍有 5%至 10%的轻症患者会发展为中重度,甚至有潜在致命的进展。除了评估肺部感染的扩散情况外,胸部 CT 还可以帮助发现并发症。因此,开发一种预测模型,通过将简单的临床和生物学参数与定性或定量 CT 数据相结合,来识别从轻症 COVID-19 恶化的高危患者,并对患者进行管理,这将具有重要的临床意义。
本研究在法国的 4 家医院进行了模型训练和内部验证,在另外 2 家独立医院进行了外部验证。我们使用了易于获得的临床参数(年龄、性别、吸烟、症状起始、心血管合并症、糖尿病、慢性呼吸系统疾病、免疫抑制)和生物学参数(淋巴细胞、CRP),并结合了轻症 COVID-19 患者初始 CT 的定性或定量数据(包括放射组学)。
初始轻度表现的患者中,使用定性 CT 扫描结合临床和生物学参数可以预测哪些患者会发展为中重度 COVID-19,其 C 指数为 0.70(95%CI 0.63;0.77)。CT 扫描定量分析可将预测性能提高至 0.73(95%CI 0.67;0.79),放射组学分析可将预测性能提高至 0.77(95%CI 0.71;0.83)。考虑到有无注射,在两个验证队列中,结果相似。
与单纯的定性分析相比,将 CT 扫描定量或放射组学分析与简单的临床和生物学参数结合使用,可以更好地预测初始轻度 COVID-19 患者的病情恶化情况。该工具可帮助合理使用医疗资源,并筛选出可能受益于新型药物的患者,从而预防 COVID-19 病情的恶化。
NCT04481620。
在对初始轻度 COVID-19 患者的病情进行预测时,与简单的临床和生物学参数相结合,CT 扫描定量或放射组学分析优于定性分析。
① 对有初始轻度 COVID-19 症状和呼吸道症状的患者进行定性 CT 扫描分析,简单的临床和生物学参数可预测其病情恶化,C 指数为 0.70。② 增加 CT 扫描定量分析可将临床预测模型的性能提高至 AUC 为 0.73。③ 放射组学分析可略微提高模型的性能,C 指数为 0.77。