Wang Xinrui, Shen Yingming, Tian Peng, Wu Mengyao, Li Zhaowen, Zhao Jiawei, Sun Jihong, Qian Ye
College of Big Data, Yunnan Agricultural University, Kunming, Yunnan, China.
International Cooperation Office, Yunnan Provincial Academy of Science and Technology, Kunming, Yunnan, China.
PLoS One. 2025 May 20;20(5):e0322851. doi: 10.1371/journal.pone.0322851. eCollection 2025.
This study aims to address the challenge of monitoring Plant Height (PH), SPAD, Leaf Area Index (LAI), and Above-Ground Biomass (AGB) in Gerbera under greenhouse cultivation conditions. We initially gathered multi-spectral images and corresponding ground truth data of these parameters at various growth stages using a low-altitude UAV. From the collected images, we derived five Vegetation Indices (VIs): NDVI, GNDVI, LCI, NDRE, and OSAVI, and extracted their textural features as fusion features. An adaptive ensemble model, OBM-RFEcv, was then developed by integrating six base models (Linear Regression, Decision Tree Regressor, Random Forest Regressor, XGBoost Regressor, and Support Vector Regressor) with Recursive Feature Elimination (RFE) to predict the key growth indicators. The results indicate that the OBM-RFEcv model outperforms the other models when using the fusion of the five VIs, particularly in the test dataset, where it achieved the highest accuracy for PH (NDVI), SPAD (GNDVI), LAI (GNDVI), and AGB (NDRE) with R2 values of 0.92, 0.90, 0.89, and 0.93, respectively. The root mean square error (RMSE) values were 0.04, 0.07, 0.08, and 0.07, respectively, showing improvements over the best individual model by 0.01, 0.03, 0.01, and 0.09 in R2, and reductions in RMSE by 0.01, 0.07, 0.08, and 0.03, respectively. These findings confirm that the OBM-RFEcv model, based on multi-spectral image fusion, effectively monitors key growth indicators in Gerbera, providing a non-invasive and precise method for greenhouse crop monitoring.
本研究旨在应对在温室栽培条件下监测非洲菊株高(PH)、叶绿素含量(SPAD)、叶面积指数(LAI)和地上生物量(AGB)的挑战。我们最初使用低空无人机在不同生长阶段收集了这些参数的多光谱图像及相应的地面真值数据。从收集的图像中,我们推导了五个植被指数(VIs):归一化差异植被指数(NDVI)、绿色归一化差异植被指数(GNDVI)、叶片色素指数(LCI)、归一化差值红边指数(NDRE)和优化土壤调整植被指数(OSAVI),并提取它们的纹理特征作为融合特征。然后,通过将六个基础模型(线性回归、决策树回归器、随机森林回归器、XGBoost回归器和支持向量回归器)与递归特征消除(RFE)相结合,开发了一种自适应集成模型OBM-RFEcv,用于预测关键生长指标。结果表明,当使用五个VIs的融合时,OBM-RFEcv模型优于其他模型,特别是在测试数据集中,它在预测PH(NDVI)、SPAD(GNDVI)、LAI(GNDVI)和AGB(NDRE)方面达到了最高准确率,决定系数(R2)值分别为0.92、0.90、0.89和0.93。均方根误差(RMSE)值分别为0.04、0.07、0.08和0.07,与最佳单个模型相比,R2分别提高了0.01、0.03、0.01和0.09,RMSE分别降低了0.01、0.07、0.08和0.03。这些发现证实,基于多光谱图像融合的OBM-RFEcv模型能够有效地监测非洲菊的关键生长指标,为温室作物监测提供了一种非侵入性的精确方法。