Suppr超能文献

基于韩国和全球人群数据集的荟萃分析提出健康肠道微生物组指数。

Proposal of a health gut microbiome index based on a meta-analysis of Korean and global population datasets.

机构信息

ChunLab Inc., Seoul, 06194, Republic of Korea.

Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 08826, Republic of Korea.

出版信息

J Microbiol. 2022 May;60(5):533-549. doi: 10.1007/s12275-022-1526-0. Epub 2022 Mar 31.

Abstract

The disruption of the human gut microbiota has been linked to host health conditions, including various diseases. However, no reliable index for measuring and predicting a healthy microbiome is currently available. Here, the sequencing data of 1,663 Koreans were obtained from three independent studies. Furthermore, we pooled 3,490 samples from public databases and analyzed a total of 5,153 fecal samples. First, we analyzed Korean gut microbiome covariates to determine the influence of lifestyle on variation in the gut microbiota. Next, patterns of microbiota variations across geographical locations and disease statuses were confirmed using a global cohort and di-sease data. Based on comprehensive comparative analysis, we were able to define three enterotypes among Korean cohorts, namely, Prevotella type, Bacteroides type, and outlier type. By a thorough categorization of dysbiosis and the evaluation of microbial characteristics using multiple datasets, we identified a wide spectrum of accuracy levels in classifying health and disease states. Using the observed microbiome patterns, we devised an index named the gut microbiome index (GMI) that could consistently predict health conditions from human gut microbiome data. Compared to ecological metrics, the microbial marker index, and machine learning approaches, GMI distinguished between healthy and non-healthy individuals with a higher accuracy across various datasets. Thus, this study proposes a potential index to measure health status of gut microbiome that is verified from multiethnic data of various diseases, and we expect this model to facilitate further clinical application of gut microbiota data in future.

摘要

人类肠道微生物组的紊乱与宿主健康状况有关,包括各种疾病。然而,目前还没有可靠的指标来衡量和预测健康的微生物组。在这里,我们从三个独立的研究中获得了 1663 名韩国人的测序数据。此外,我们还从公共数据库中汇集了 3490 个样本,总共分析了 5153 个粪便样本。首先,我们分析了韩国肠道微生物组的协变量,以确定生活方式对肠道微生物组变化的影响。接下来,我们使用全球队列和疾病数据证实了地理位置和疾病状态变化的微生物模式。基于综合比较分析,我们能够在韩国队列中定义三种肠型,即普雷沃氏菌型、拟杆菌型和异常型。通过对失调进行彻底分类,并使用多个数据集评估微生物特征,我们确定了广泛的准确度水平,用于分类健康和疾病状态。利用观察到的微生物组模式,我们设计了一个名为肠道微生物组指数(GMI)的指数,该指数可以从人类肠道微生物组数据中一致地预测健康状况。与生态指标、微生物标志物指数和机器学习方法相比,GMI 在各种数据集上都能更准确地区分健康和非健康个体。因此,这项研究提出了一种潜在的指数来衡量肠道微生物组的健康状况,该指数是从各种疾病的多种族数据中验证的,我们希望该模型能够促进未来肠道微生物数据在临床中的进一步应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验