Xinjiang Key laboratory of Explosives Safety Science, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi, 830000, China.
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
Angew Chem Int Ed Engl. 2022 Jul 18;61(29):e202203358. doi: 10.1002/anie.202203358. Epub 2022 May 13.
Manipulation of a multi-physical quantity to steer a molecular photophysical property is of great significance in improving sensing performance. Here, an investigation on how a physical quantity rooted in the molecular structure induces an optical behavior change to facilitate ultrasensitive detection of ethylenediamine (EDA) is performed by varying a set of thiols. The model molecule consisting of a thiol with dual-carboxyl exhibits the strongest fluorescence, which is ascribed to the electron-donating ability and prompted larger orbital overlap and oscillator strength. The elevated fluorescence positively corelated to the increased EDA, endowing an ultrasensitive response to the nanomolar-liquid/ppm-vapor. A gas detector with superior performance fulfills a contactless and real-time management of EDA. We envisage this electron-tuning strategy-enabled fluorescence enhancement can offer in-depth insight in advancing molecule-customized design, further paving the way to widening applications.
操控多物理量以改变分子光物理性质对于提高传感性能具有重要意义。在这里,通过改变一组硫醇,研究了一种源于分子结构的物理量如何诱导光学行为变化,以促进乙二胺(EDA)的超灵敏检测。由带有双羧基的硫醇组成的模型分子表现出最强的荧光,这归因于供电子能力,并促使更大的轨道重叠和振子强度。荧光的增强与 EDA 的增加呈正相关,赋予了对纳摩尔液体/ppm 蒸气的超灵敏响应。具有优异性能的气体探测器实现了对 EDA 的非接触式和实时管理。我们预计,这种基于电子调控的荧光增强策略可以为推进分子定制设计提供深入的见解,进一步为拓宽应用铺平道路。