Suppr超能文献

零膨胀体制转换随机微分方程模型在高度不平衡的多变量、多主体时间序列数据中的应用。

Zero-Inflated Regime-Switching Stochastic Differential Equation Models for Highly Unbalanced Multivariate, Multi-Subject Time-Series Data.

机构信息

St. Jude Children's Research Hospital, MS 768, Room R6006, 262 Danny Thomas Place, Memphis, TN, 38105-3678, USA.

The Pennsylvania State University, University Park, PA, USA.

出版信息

Psychometrika. 2019 Jun;84(2):611-645. doi: 10.1007/s11336-019-09664-7. Epub 2019 Mar 11.

Abstract

In the study of human dynamics, the behavior under study is often operationalized by tallying the frequencies and intensities of a collection of lower-order processes. For instance, the higher-order construct of negative affect may be indicated by the occurrence of crying, frowning, and other verbal and nonverbal expressions of distress, fear, anger, and other negative feelings. However, because of idiosyncratic differences in how negative affect is expressed, some of the lower-order processes may be characterized by sparse occurrences in some individuals. To aid the recovery of the true dynamics of a system in cases where there may be an inflation of such "zero responses," we propose adding a regime (unobserved phase) of "non-occurrence" to a bivariate Ornstein-Uhlenbeck (OU) model to account for the high instances of non-occurrence in some individuals while simultaneously allowing for multivariate dynamic representation of the processes of interest under nonzero responses. The transition between the occurrence (i.e., active) and non-occurrence (i.e., inactive) regimes is represented using a novel latent Markovian transition model with dependencies on latent variables and person-specific covariates to account for inter-individual heterogeneity of the processes. Bayesian estimation and inference are based on Markov chain Monte Carlo algorithms implemented using the JAGS software. We demonstrate the utility of the proposed zero-inflated regime-switching OU model to a study of young children's self-regulation at 36 and 48 months.

摘要

在人类动态学研究中,通常通过对一系列低阶过程的频率和强度进行计数来对研究行为进行操作化。例如,负性情绪的高阶结构可能由哭泣、皱眉和其他表达痛苦、恐惧、愤怒和其他负性情绪的言语和非言语表现来指示。然而,由于负性情绪表达的特殊差异,在某些个体中,一些低阶过程的特征可能是稀疏发生。为了帮助恢复系统的真实动态,在存在这种“零响应”膨胀的情况下,我们建议在双变量奥恩斯坦-乌伦贝克(OU)模型中添加一个“未发生”的状态(未观察阶段),以解释某些个体中高比例的未发生情况,同时允许对非零响应下感兴趣的过程进行多元动态表示。发生(即活跃)和未发生(即不活跃)状态之间的转换使用一种新颖的潜在马尔可夫转移模型来表示,该模型依赖于潜在变量和个体特定协变量,以解释过程的个体间异质性。贝叶斯估计和推断基于使用 JAGS 软件实现的马尔可夫链蒙特卡罗算法。我们展示了所提出的零膨胀状态转换 OU 模型在研究 36 个月和 48 个月大的幼儿自我调节方面的效用。

相似文献

本文引用的文献

1
Dynamical systems modeling of early childhood self-regulation.幼儿自我调节的动态系统建模
Emotion. 2017 Jun;17(4):684-699. doi: 10.1037/emo0000268. Epub 2017 Jan 12.
5
Goodness-of-Fit Testing for Latent Class Models.潜在类别模型的拟合优度检验
Multivariate Behav Res. 1993 Jul 1;28(3):375-89. doi: 10.1207/s15327906mbr2803_4.
6
Regime-Switching Bivariate Dual Change Score Model.切换变量双变化分模型。
Multivariate Behav Res. 2013 Jul;48(4):463-502. doi: 10.1080/00273171.2013.787870.
9
Nonlinear regime-switching state-space (RSSS) models.非线性状态切换状态空间(RSSS)模型。
Psychometrika. 2013 Oct;78(4):740-68. doi: 10.1007/s11336-013-9330-8. Epub 2013 Mar 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验