Suppr超能文献

小球藻对水溶液中铀的生物吸附。

Biosorption of Uranium from aqueous solution by green microalga Chlorella sorokiniana.

机构信息

Food Toxicology and Contaminants Department, National Research Centre, Cairo, Egypt.

Nuclear Materials Authority, El-Kattamia, El-Maadi, Cairo, Egypt.

出版信息

Environ Sci Pollut Res Int. 2022 Aug;29(38):58388-58404. doi: 10.1007/s11356-022-19827-2. Epub 2022 Apr 2.

Abstract

Uranium and its compounds are radioactive and toxic, as well as highly polluting and damaging the environment. Novel uranium adsorbents with high biosorption capacity that are both eco-friendly and cost-effective are continuously being researched. The non-living biomass of the fresh water green microalga Chlorella sorokiniana was used to study the biosorption of uranium from aqueous solution. The biosorption of uranium from aqueous solutions onto the biomass of microalga C. sorokiniana was investigated in batch studies. The results showed that the optimal pH for uranium biosorption onto C. sorokiniana was 2.5. Uranium biosorption occurred quickly, with an equilibrium time of 90 min. The kinetics followed a pseudo-second-order rate equation, and the biosorption process fit the Langmuir isotherm model well, with a maximum monolayer adsorption capacity of 188.7 mg/g. The linear plot of the DKR model revealed that the mean free energy E = 14.8 kJ/mol, confirming chemisorption adsorption with ion exchange mode. The morphology of the algal biomass was investigated using a scanning electron microscope and energy dispersive X-ray spectroscopy. The FTIR spectroscopy analysis demonstrated that functional groups (carboxyl, amino, and hydroxyl) on the algal surface could contribute to the uranium biosorption process, which involves ion exchange and uranium absorption, and coordination mechanisms. Thermodynamic simulations indicated that the uranium biosorption process was exothermic (ΔH = -19.5562 kJ/mol) and spontaneous at lower temperatures. The current study revealed that C. sorokiniana non-living biomass could be an efficient, rapid, low-cost, and convenient method of removing uranium from aqueous solution.

摘要

铀及其化合物具有放射性和毒性,同时还高度污染环境,破坏生态。因此,人们一直在研究具有高效生物吸附能力、环境友好且经济实惠的新型铀吸附剂。本研究利用淡水绿藻小球藻的非活体生物质来研究从水溶液中吸附铀。在批量研究中研究了从水溶液中到微藻 C. sorokiniana 生物质的铀的生物吸附。结果表明,铀在 C. sorokiniana 上的最佳吸附 pH 值为 2.5。铀的生物吸附发生得很快,平衡时间为 90 分钟。动力学符合拟二级速率方程,吸附过程很好地符合 Langmuir 等温线模型,最大单层吸附容量为 188.7mg/g。DKR 模型的线性图表明平均自由能 E = 14.8 kJ/mol,证实了离子交换模式的化学吸附。使用扫描电子显微镜和能谱仪研究了藻生物质的形态。FTIR 光谱分析表明,藻类表面的官能团(羧基、氨基和羟基)有助于铀的生物吸附过程,涉及离子交换和铀的吸收以及配位机制。热力学模拟表明,铀的生物吸附过程是放热的(ΔH = -19.5562 kJ/mol),在较低温度下是自发的。本研究表明,C. sorokiniana 非活体生物质可能是一种从水溶液中去除铀的高效、快速、低成本和方便的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6bc2/9395467/1afaa15e2bb0/11356_2022_19827_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验