Suppr超能文献

综合征监测中时间分割、时间单位和检测算法的联合评估

Joint assessment of temporal segmentation, time unit and detection algorithms in syndromic surveillance.

作者信息

Brilleaud Sophie, Durand Benoit, Le Strat Yann, Sala Carole

机构信息

Epidemiology Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 14, rue Pierre et Marie Curie, 94706 Maisons-Alfort Cedex, France; Santé publique France, French National Public Health Agency, 12 rue du Val d'Osne, 94415 Saint-Maurice Cedex, France; French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 31, avenue Tony Garnier, 69364 Lyon Cedex 07, France; Paris-Est-Créteil University, France.

Epidemiology Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 14, rue Pierre et Marie Curie, 94706 Maisons-Alfort Cedex, France.

出版信息

Prev Vet Med. 2022 Jun;203:105619. doi: 10.1016/j.prevetmed.2022.105619. Epub 2022 Mar 21.

Abstract

The choice of the aggregation that defines the temporal unit of epidemiological surveillance is part of the more theoretical framework of the modifiable temporal unit problem (MTUP). It has been demonstrated that this choice influences temporal cluster detection and may lead to false-positive results and poor estimation of regression model parameters. In syndromic surveillance (SyS), despite the choice of which temporal aggregation to use being crucial, it has not yet been addressed in the literature. In most SyS systems, this choice is driven by the frequency of the data collection and/or human resources available, although neither the temporal unit's influence on the performance of anomaly detection algorithms nor on the efficiency of the SyS are known.The main objective of our study was to analyze the influence of the temporal aggregation unit on the performances of SyS detection algorithms used routinely, according to the characteristics of specific syndromes and outbreaks. Simulating daily time series of various syndromes, we tested three different time series aggregation methods. For each of four anomaly detection algorithms and their variants, we calculated seven performance indicators and multi-criteria scores to guide epidemiologists in their choice of which temporal aggregation of surveillance to use. From 19,200 analyzed time series, we observed an effect of temporal aggregation on the performance of the detection algorithms tested. Results also showed that the time aggregation unit was linked to the detection algorithm used, and that strong aggregation-algorithm interactions need to be taken into account when deciding on which aggregation-algorithm pair to use. Using theoretical data, our study also showed that no one ideal aggregation-algorithm pair exists for all contexts when deciding on which temporal unit of surveillance to use, and that the choice depends on several parameters.Our results can help public health practitioners choose the most appropriate time series aggregation and algorithm according to their specific needs. Finally, the present work enabled us to develop recommendations for a One Health project where the same time aggregation type and detection method could be used for both human and animal syndromic surveillance data.

摘要

定义流行病学监测时间单位的汇总方式选择,是可修改时间单位问题(MTUP)这一理论框架的一部分。已有研究表明,这一选择会影响时间聚集性检测,可能导致假阳性结果以及回归模型参数估计不佳。在症状监测(SyS)中,尽管选择使用何种时间汇总方式至关重要,但文献中尚未对此进行探讨。在大多数症状监测系统中,这一选择是由数据收集频率和/或可用人力资源驱动的,不过时间单位对异常检测算法性能以及症状监测效率的影响尚不清楚。我们研究的主要目的是根据特定症状和疫情的特征,分析时间汇总单位对常规使用的症状监测检测算法性能的影响。通过模拟各种症状的每日时间序列,我们测试了三种不同的时间序列汇总方法。对于四种异常检测算法及其变体中的每一种,我们计算了七个性能指标和多标准分数,以指导流行病学家选择使用哪种时间汇总方式进行监测。从19200个分析的时间序列中,我们观察到时间汇总对所测试检测算法性能的影响。结果还表明,时间汇总单位与所使用的检测算法相关,在决定使用哪种汇总 - 算法对时,需要考虑强烈的汇总 - 算法相互作用。利用理论数据,我们的研究还表明,在决定使用哪种监测时间单位时,不存在适用于所有情况的理想汇总 - 算法对,而且选择取决于几个参数。我们的结果可以帮助公共卫生从业者根据他们的特定需求选择最合适的时间序列汇总和算法。最后,本研究使我们能够为一个“同一健康”项目制定建议,在该项目中,相同的时间汇总类型和检测方法可用于人类和动物的症状监测数据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验