Suppr超能文献

发展中大脑的 DTI 和 NODDI 中的白质微观结构的一般因素。

General factors of white matter microstructure from DTI and NODDI in the developing brain.

机构信息

MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom.

Department of Paediatric Radiology, Royal Hospital for Children and Young People, Edinburgh EH16 4TJ, United Kingdom.

出版信息

Neuroimage. 2022 Jul 1;254:119169. doi: 10.1016/j.neuroimage.2022.119169. Epub 2022 Apr 1.

Abstract

Preterm birth is closely associated with diffuse white matter dysmaturation inferred from diffusion MRI and neurocognitive impairment in childhood. Diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI) are distinct dMRI modalities, yet metrics derived from these two methods share variance across tracts. This raises the hypothesis that dimensionality reduction approaches may provide efficient whole-brain estimates of white matter microstructure that capture (dys)maturational processes. To investigate the optimal model for accurate classification of generalised white matter dysmaturation in preterm infants we assessed variation in DTI and NODDI metrics across 16 major white matter tracts using principal component analysis and structural equation modelling, in 79 term and 141 preterm infants at term equivalent age. We used logistic regression models to evaluate performances of single-metric and multimodality general factor frameworks for efficient classification of preterm infants based on variation in white matter microstructure. Single-metric general factors from DTI and NODDI capture substantial shared variance (41.8-72.5%) across 16 white matter tracts, and two multimodality factors captured 93.9% of variance shared between DTI and NODDI metrics themselves. General factors associate with preterm birth and a single model that includes all seven DTI and NODDI metrics provides the most accurate prediction of microstructural variations associated with preterm birth. This suggests that despite global covariance of dMRI metrics in neonates, each metric represents information about specific (and additive) aspects of the underlying microstructure that differ in preterm compared to term subjects.

摘要

早产与弥散磁共振成像推断的弥漫性白质发育不良以及儿童期神经认知障碍密切相关。弥散张量成像(DTI)和神经丝取向分散和密度成像(NODDI)是两种不同的弥散磁共振成像方式,但这两种方法得出的指标在束间存在差异。这就提出了一种假设,即降维方法可能提供有效的全脑白质微观结构估计,从而捕获(发育不良)过程。为了研究准确分类早产儿广泛性白质发育不良的最佳模型,我们使用主成分分析和结构方程模型评估了 79 名足月婴儿和 141 名足月婴儿在相当于胎龄时的 16 条主要白质束的 DTI 和 NODDI 指标的变化。我们使用逻辑回归模型评估了单指标和多模态综合因子框架在基于白质微观结构变化对早产儿进行有效分类方面的性能。DTI 和 NODDI 的单指标综合因子在 16 条白质束中捕获了大量的共同方差(41.8-72.5%),而两个多模态因子则捕获了 DTI 和 NODDI 指标本身之间 93.9%的共享方差。综合因子与早产有关,包含所有七个 DTI 和 NODDI 指标的单一模型对与早产相关的微观结构变化的预测最准确。这表明,尽管新生儿的弥散磁共振成像指标存在总体协方差,但每个指标都代表了特定(且可累加)方面的信息,这些方面在早产儿和足月婴儿中存在差异。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验