Department of Data Science, The Institute of Cancer Research, London, United Kingdom.
Wellcome Sanger Institute, Hinxton, United Kingdom.
Mol Cancer Ther. 2022 Jun 1;21(6):1020-1029. doi: 10.1158/1535-7163.MCT-21-0442.
We hypothesize that the study of acute protein perturbation in signal transduction by targeted anticancer drugs can predict drug sensitivity of these agents used as single agents and rational combination therapy. We assayed dynamic changes in 52 phosphoproteins caused by an acute exposure (1 hour) to clinically relevant concentrations of seven targeted anticancer drugs in 35 non-small cell lung cancer (NSCLC) cell lines and 16 samples of NSCLC cells isolated from pleural effusions. We studied drug sensitivities across 35 cell lines and synergy of combinations of all drugs in six cell lines (252 combinations). We developed orthogonal machine-learning approaches to predict drug response and rational combination therapy. Our methods predicted the most and least sensitive quartiles of drug sensitivity with an AUC of 0.79 and 0.78, respectively, whereas predictions based on mutations in three genes commonly known to predict response to the drug studied, for example, EGFR, PIK3CA, and KRAS, did not predict sensitivity (AUC of 0.5 across all quartiles). The machine-learning predictions of combinations that were compared with experimentally generated data showed a bias to the highest quartile of Bliss synergy scores (P = 0.0243). We confirmed feasibility of running such assays on 16 patient samples of freshly isolated NSCLC cells from pleural effusions. We have provided proof of concept for novel methods of using acute ex vivo exposure of cancer cells to targeted anticancer drugs to predict response as single agents or combinations. These approaches could complement current approaches using gene mutations/amplifications/rearrangements as biomarkers and demonstrate the utility of proteomics data to inform treatment selection in the clinic.
我们假设,通过靶向抗癌药物对信号转导中急性蛋白扰动的研究,可以预测这些药物作为单一药物和合理联合治疗的药物敏感性。我们检测了在 35 种非小细胞肺癌 (NSCLC) 细胞系和 16 例胸腔积液中分离的 NSCLC 细胞中,7 种靶向抗癌药物在临床相关浓度下急性暴露 (1 小时) 引起的 52 种磷酸化蛋白的动态变化。我们研究了 35 种细胞系的药物敏感性和 6 种细胞系中的所有药物组合的协同作用 (252 种组合)。我们开发了正交机器学习方法来预测药物反应和合理的联合治疗。我们的方法预测了药物敏感性最敏感和最不敏感的四分位数,AUC 分别为 0.79 和 0.78,而基于三个通常已知的基因 (例如 EGFR、PIK3CA 和 KRAS) 突变预测药物反应的方法则无法预测敏感性 (所有四分位数的 AUC 为 0.5)。与实验生成的数据相比,机器学习对组合的预测显示出对 Bliss 协同评分最高四分位数的偏向 (P = 0.0243)。我们证实了在来自胸腔积液的 16 例新鲜分离的 NSCLC 患者样本上运行此类检测的可行性。我们已经为使用癌症细胞对靶向抗癌药物的急性离体暴露来预测单一药物或联合药物反应的新方法提供了概念验证。这些方法可以补充当前使用基因突变/扩增/重排作为生物标志物的方法,并证明蛋白质组学数据在临床上指导治疗选择的实用性。