Suppr超能文献

靶向癌症治疗的合理组合:背景、进展与挑战

Rational combinations of targeted cancer therapies: background, advances and challenges.

作者信息

Jin Haojie, Wang Liqin, Bernards René

机构信息

State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

Division of Molecular Carcinogenesis, Oncode Institute, Netherlands Cancer Institute, Amsterdam, the Netherlands.

出版信息

Nat Rev Drug Discov. 2023 Mar;22(3):213-234. doi: 10.1038/s41573-022-00615-z. Epub 2022 Dec 12.

Abstract

Over the past two decades, elucidation of the genetic defects that underlie cancer has resulted in a plethora of novel targeted cancer drugs. Although these agents can initially be highly effective, resistance to single-agent therapies remains a major challenge. Combining drugs can help avoid resistance, but the number of possible drug combinations vastly exceeds what can be tested clinically, both financially and in terms of patient availability. Rational drug combinations based on a deep understanding of the underlying molecular mechanisms associated with therapy resistance are potentially powerful in the treatment of cancer. Here, we discuss the mechanisms of resistance to targeted therapies and how effective drug combinations can be identified to combat resistance. The challenges in clinically developing these combinations and future perspectives are considered.

摘要

在过去二十年中,对癌症潜在遗传缺陷的阐明已催生了大量新型靶向抗癌药物。尽管这些药物最初可能非常有效,但对单药治疗产生耐药性仍然是一个重大挑战。联合用药有助于避免耐药性,但可能的药物组合数量远远超过了在经济上和患者可及性方面能够进行临床测试的数量。基于对与治疗耐药性相关的潜在分子机制的深入理解而进行的合理药物组合,在癌症治疗中可能具有强大作用。在此,我们讨论靶向治疗的耐药机制,以及如何确定有效的联合用药来对抗耐药性。我们还考虑了临床开发这些联合用药所面临的挑战以及未来前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验