Suppr超能文献

基于微流控芯片和机器学习的高通量、活细胞、多重分泌生物标志物分析用于肿瘤细胞分类。

High-Throughput, Living Single-Cell, Multiple Secreted Biomarker Profiling Using Microfluidic Chip and Machine Learning for Tumor Cell Classification.

机构信息

Institute of Marine Science and Technology, Shandong University, Tsingdao, 266237, China.

Obstetrics and Gynecology Department, Peking University Third Hospital, Beijing, 100191, China.

出版信息

Adv Healthc Mater. 2022 Jul;11(13):e2102800. doi: 10.1002/adhm.202102800. Epub 2022 May 4.

Abstract

Secreted proteins provide abundant functional information on living cells and can be used as important tumor diagnostic markers, of which profiling at the single-cell level is helpful for accurate tumor cell classification. Currently, achieving living single-cell multi-index, high-sensitivity, and quantitative secretion biomarker profiling remains a great challenge. Here, a high-throughput living single-cell multi-index secreted biomarker profiling platform is proposed, combined with machine learning, to achieve accurate tumor cell classification. A single-cell culture microfluidic chip with self-assembled graphene oxide quantum dots (GOQDs) enables high-activity single-cell culture, ensuring normal secretion of biomarkers and high-throughput single-cell separation, providing sufficient statistical data for machine learning. At the same time, the antibody barcode chip with self-assembled GOQDs performs multi-index, highly sensitive, and quantitative detection of secreted biomarkers, in which each cell culture chamber covers a whole barcode array. Importantly, by combining the K-means strategy with machine learning, thousands of single tumor cell secretion data are analyzed, enabling tumor cell classification with a recognition accuracy of 95.0%. In addition, further profiling of the grouping results reveals the unique secretion characteristics of subgroups. This work provides an intelligent platform for high-throughput living single-cell multiple secretion biomarker profiling, which has broad implications for cancer investigation and biomedical research.

摘要

分泌蛋白为活细胞提供了丰富的功能信息,可作为重要的肿瘤诊断标志物,对其进行单细胞水平的分析有助于进行准确的肿瘤细胞分类。目前,实现活细胞单细胞多指标、高灵敏度和定量分泌生物标志物分析仍然是一个巨大的挑战。在这里,提出了一种高通量活细胞单细胞多指标分泌生物标志物分析平台,并结合机器学习实现了对肿瘤细胞的准确分类。具有自组装氧化石墨烯量子点(GOQDs)的单细胞培养微流控芯片可实现高活性的单细胞培养,确保生物标志物的正常分泌和高通量的单细胞分离,为机器学习提供了充足的统计数据。同时,具有自组装 GOQDs 的抗体条码芯片可对分泌生物标志物进行多指标、高灵敏度和定量检测,其中每个细胞培养室覆盖整个条码阵列。重要的是,通过将 K-均值策略与机器学习相结合,对数千个单个肿瘤细胞的分泌数据进行分析,实现了识别准确率为 95.0%的肿瘤细胞分类。此外,对分组结果的进一步分析揭示了亚群独特的分泌特征。这项工作为高通量活细胞单细胞多种分泌生物标志物分析提供了一个智能化平台,对癌症研究和生物医学研究具有广泛的意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验