Suppr超能文献

使用下颌监测器和机器学习分析诊断睡眠呼吸暂停:与家庭多导睡眠图的一晚一致性比较

Diagnosis of Sleep Apnoea Using a Mandibular Monitor and Machine Learning Analysis: One-Night Agreement Compared to in-Home Polysomnography.

作者信息

Kelly Julia L, Ben Messaoud Raoua, Joyeux-Faure Marie, Terrail Robin, Tamisier Renaud, Martinot Jean-Benoît, Le-Dong Nhat-Nam, Morrell Mary J, Pépin Jean-Louis

机构信息

National Heart and Lung Institute, Imperial College London, Royal Brompton Hospital, London, United Kingdom.

HP2 Laboratory, Inserm U1300, Grenoble Alpes University, Grenoble, France.

出版信息

Front Neurosci. 2022 Mar 15;16:726880. doi: 10.3389/fnins.2022.726880. eCollection 2022.

Abstract

BACKGROUND

The capacity to diagnose obstructive sleep apnoea (OSA) must be expanded to meet an estimated disease burden of nearly one billion people worldwide. Validated alternatives to the gold standard polysomnography (PSG) will improve access to testing and treatment. This study aimed to evaluate the diagnosis of OSA, using measurements of mandibular movement (MM) combined with automated machine learning analysis, compared to in-home PSG.

METHODS

40 suspected OSA patients underwent single overnight in-home sleep testing with PSG (Nox A1, ResMed, Australia) and simultaneous MM monitoring (Sunrise, Sunrise SA, Belgium). PSG recordings were manually analysed by two expert sleep centres (Grenoble and London); MM analysis was automated. The Obstructive Respiratory Disturbance Index calculated from the MM monitoring (MM-ORDI) was compared to the PSG (PSG-ORDI) using intraclass correlation coefficient and Bland-Altman analysis. Receiver operating characteristic curves (ROC) were constructed to optimise the diagnostic performance of the MM monitor at different PSG-ORDI thresholds (5, 15, and 30 events/hour).

RESULTS

31 patients were included in the analysis (58% men; mean (SD) age: 48 (15) years; BMI: 30.4 (7.6) kg/m). Good agreement was observed between MM-ORDI and PSG-ORDI (median bias 0.00; 95% CI -23.25 to + 9.73 events/hour). However, for 15 patients with no or mild OSA, MM monitoring overestimated disease severity (PSG-ORDI < 5: MM-ORDI mean overestimation + 5.58 (95% CI + 2.03 to + 7.46) events/hour; PSG-ORDI > 5-15: MM-ORDI overestimation + 3.70 (95% CI -0.53 to + 18.32) events/hour). In 16 patients with moderate-severe OSA ( = 9 with PSG-ORDI 15-30 events/h and = 7 with a PSG-ORD > 30 events/h), there was an underestimation (PSG-ORDI > 15: MM-ORDI underestimation -8.70 (95% CI -28.46 to + 4.01) events/hour). ROC optimal cut-off values for PSG-ORDI thresholds of 5, 15, 30 events/hour were: 9.53, 12.65 and 24.81 events/hour, respectively. These cut-off values yielded a sensitivity of 88, 100 and 79%, and a specificity of 100, 75, 96%. The positive predictive values were: 100, 80, 95% and the negative predictive values 89, 100, 82%, respectively.

CONCLUSION

The diagnosis of OSA, using MM with machine learning analysis, is comparable to manually scored in-home PSG. Therefore, this novel monitor could be a convenient diagnostic tool that can easily be used in the patients' own home.

CLINICAL TRIAL REGISTRATION

https://clinicaltrials.gov, identifier NCT04262557.

摘要

背景

阻塞性睡眠呼吸暂停(OSA)的诊断能力必须得到扩展,以应对全球近10亿人的估计疾病负担。经过验证的金标准多导睡眠图(PSG)替代方法将改善检测和治疗的可及性。本研究旨在评估与家庭PSG相比,使用下颌运动(MM)测量结合自动机器学习分析来诊断OSA的情况。

方法

40例疑似OSA患者接受了一次夜间家庭睡眠测试,同时进行PSG(Nox A1,瑞思迈,澳大利亚)和同步MM监测(Sunrise,Sunrise SA,比利时)。PSG记录由两个专业睡眠中心(格勒诺布尔和伦敦)进行人工分析;MM分析是自动化的。使用组内相关系数和Bland-Altman分析,将根据MM监测计算出的阻塞性呼吸紊乱指数(MM-ORDI)与PSG(PSG-ORDI)进行比较。构建受试者工作特征曲线(ROC),以优化MM监测仪在不同PSG-ORDI阈值(5、15和30次/小时)下的诊断性能。

结果

31例患者纳入分析(男性占58%;平均(标准差)年龄:48(15)岁;BMI:30.4(7.6)kg/m²)。MM-ORDI与PSG-ORDI之间观察到良好的一致性(中位数偏差0.00;95%CI -23.25至+9.73次/小时)。然而,对于15例无OSA或轻度OSA患者,MM监测高估了疾病严重程度(PSG-ORDI<5:MM-ORDI平均高估+5.58(95%CI +2.03至+7.46)次/小时;PSG-ORDI>5-15:MM-ORDI高估+3.70(95%CI -0.53至+18.32)次/小时)。在16例中重度OSA患者中(PSG-ORDI为15-30次/小时的有9例,PSG-ORDI>30次/小时的有7例),存在低估情况(PSG-ORDI>15:MM-ORDI低估-8.70(95%CI -28.46至+4.01)次/小时)。PSG-ORDI阈值为5、15、30次/小时的ROC最佳截断值分别为:9.53、12.65和24.81次/小时。这些截断值的敏感性分别为88%、100%和79%,特异性分别为100%、75%和96%。阳性预测值分别为:100%、80%和95%,阴性预测值分别为89%、100%和82%。

结论

使用MM结合机器学习分析诊断OSA与家庭PSG人工评分相当。因此,这种新型监测仪可能是一种方便的诊断工具,可轻松用于患者家中。

临床试验注册

https://clinicaltrials.gov,标识符NCT04262557。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/331e/8965001/5db309a1fed6/fnins-16-726880-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验