Martinot Jean-Benoit, Le-Dong Nhat-Nam, Malhotra Atul, Pépin Jean-Louis
Sleep Laboratory, CHU Université catholique de Louvain (UCL), Namur Site Sainte-Elisabeth, Namur, Belgium.
Institute of Experimental and Clinical Research, UCL Bruxelles Woluwe, Brussels, Belgium.
J Prosthodont. 2025 Apr;34(S1):10-25. doi: 10.1111/jopr.14003. Epub 2024 Dec 15.
This review aims to highlight the pivotal role of the mandibular jaw movement (MJM) signal in advancing artificial intelligence (AI)-powered technologies for diagnosing obstructive sleep apnea (OSA).
A scoping review was conducted to evaluate various aspects of the MJM signal and their contribution to improving signal proficiency for users.
The comprehensive literature analysis is structured into four key sections, each addressing factors essential to signal proficiency. These factors include (1) the comprehensiveness of research, development, and application of MJM-based technology; (2) the physiological significance of the MJM signal for various clinical tasks; (3) the technical transparency; and (4) the interpretability of the MJM signal. Comparisons with the photoplethysmography (PPG) signal are made where applicable.
Proficiency in biosignal interpretation is essential for the success of AI-driven diagnostic tools and for maximizing the clinical benefits through enhanced physiological insight. Through rigorous research ensuring an enhanced understanding of the signal and its extensive validation, the MJM signal sets a new benchmark for the development of AI-driven diagnostic solutions in OSA diagnosis.
本综述旨在强调下颌运动(MJM)信号在推进用于诊断阻塞性睡眠呼吸暂停(OSA)的人工智能(AI)技术方面的关键作用。
进行了一项范围综述,以评估MJM信号的各个方面及其对提高用户信号熟练度的贡献。
全面的文献分析分为四个关键部分,每个部分都涉及信号熟练度的关键因素。这些因素包括:(1)基于MJM的技术的研究、开发和应用的全面性;(2)MJM信号对各种临床任务的生理意义;(3)技术透明度;(4)MJM信号的可解释性。在适用的情况下,与光电容积脉搏波描记法(PPG)信号进行了比较。
生物信号解释的熟练度对于AI驱动的诊断工具的成功以及通过增强生理洞察力最大化临床益处至关重要。通过严谨的研究确保对信号有更深入的理解并进行广泛验证,MJM信号为OSA诊断中AI驱动的诊断解决方案的开发树立了新的标杆。