Suppr超能文献

基于时间序列分析模型的多烯植物油及其对女性健康益处的评价研究——以牡丹籽油为例。

A Study on the Evaluation of Polyenoic Vegetable Oils and Their Female Health Benefits Based on Time Series Analysis Model: The Case of Peony Seed Oil.

机构信息

Shengnong Technology Group, Jinzhong, Shanxi 030805, China.

College of Engineering, China Agricultural University, Haidian, Beijing 100083, China.

出版信息

J Healthc Eng. 2022 Mar 25;2022:3127698. doi: 10.1155/2022/3127698. eCollection 2022.

Abstract

Polyenoic vegetable oils mainly contain polyenoic acids such as linoleic acid and linolenic acid, as well as active ingredients such as VE, phytosterols, mineral elements, and squalene. Among them, schisandra oil, kiwi seed oil, grape seed oil, maitake fruit oil, and evening primrose seed oil all contain up to 80% or more polyenoic acids. Studies have shown that polygenic vegetable oils have the effects of assisting in lowering blood lipids, antioxidation, delaying ageing, anti-inflammation, sun protection, moisturizing, slimming and weight loss, etc. They can be widely used in nutritional and healthy edible oils, health food, skin care, and cosmetic products and have great prospects for development and utilization. This paper explores the application of artificial neural networks in the analysis of data. A nonlinear time series prediction method based on the BP algorithm is proposed. The prediction accuracy is much higher than that of the traditional method.

摘要

多烯植物油主要含有亚油酸、亚麻酸等多烯酸以及 VE、植物甾醇、矿物质元素和角鲨烯等活性成分。其中,五味子油、猕猴桃籽油、葡萄籽油、舞茸油、月见草籽油等均含有 80%以上的多烯酸。研究表明,多烯植物油具有辅助降血脂、抗氧化、延缓衰老、抗炎、防晒、保湿、瘦身减肥等功效。可广泛应用于营养保健食用油、保健食品、护肤品、化妆品等领域,具有很大的开发利用前景。本文探讨了人工神经网络在数据分析中的应用。提出了一种基于 BP 算法的非线性时间序列预测方法。预测精度远高于传统方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d996/8975637/b1dbc3b22818/JHE2022-3127698.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验