Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA.
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012, Changchun, P.R. China.
Nat Commun. 2021 Jan 22;12(1):523. doi: 10.1038/s41467-020-20860-3.
The outcome of radiotherapy is significantly restricted by tumor hypoxia. To overcome this obstacle, one prevalent solution is to increase intratumoral oxygen supply. However, its effectiveness is often limited by the high metabolic demand for O by cancer cells. Herein, we develop a hybrid semiconducting organosilica-based O nanoeconomizer pHPFON-NO/O to combat tumor hypoxia. Our solution is twofold: first, the pHPFON-NO/O interacts with the acidic tumor microenvironment to release NO for endogenous O conservation; second, it releases O in response to mild photothermal effect to enable exogenous O infusion. Additionally, the photothermal effect can be increased to eradicate tumor residues with radioresistant properties due to other factors. This "reducing expenditure of O and broadening sources" strategy significantly alleviates tumor hypoxia in multiple ways, greatly enhances the efficacy of radiotherapy both in vitro and in vivo, and demonstrates the synergy between on-demand temperature-controlled photothermal and oxygen-elevated radiotherapy for complete tumor response.
放疗的效果受到肿瘤乏氧的显著限制。为了克服这一障碍,一种常见的解决方案是增加肿瘤内的氧气供应。然而,其效果往往受到癌细胞对 O 的高代谢需求的限制。在此,我们开发了一种基于混合半导体有机硅的 O 纳米节约器 pHPFON-NO/O,以对抗肿瘤乏氧。我们的解决方案有两方面:首先,pHPFON-NO/O 与酸性肿瘤微环境相互作用,释放 NO 以保护内源性 O;其次,它在温和的光热效应下释放 O,从而实现外源性 O 的输注。此外,由于其他因素,光热效应可以增强,以消灭具有放射抗性的肿瘤残余物。这种“减少 O 的消耗和拓宽来源”的策略通过多种方式显著缓解肿瘤乏氧,大大增强了体外和体内放疗的疗效,并证明了按需温度控制光热和升高氧放疗的协同作用,以实现完全的肿瘤反应。