Jeong Dajeong, Yoo Changhyun, Yeh Sang-Wook, Yoon Jin-Ho, Lee Daegyun, Lee Jae-Bum, Choi Jin-Young
Department of Climate and Energy Systems Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, South Korea.
Department of Marine Sciences and Convergent Technology, Hanyang University ERICA, Ansan, South Korea.
Asia Pac J Atmos Sci. 2022;58(4):549-561. doi: 10.1007/s13143-022-00275-4. Epub 2022 Mar 28.
Concentrations of fine particulate matter smaller than 2.5 μm in diameter (PM) over the Korean Peninsula experience year-to-year variations due to interannual variation in climate conditions. This study develops a multiple linear regression model based on slowly varying boundary conditions to predict winter and spring PM concentrations at 1-3-month lead times. Nation-wide observations of Korea, which began in 2015, is extended back to 2005 using the local Seoul government's observations, constructing a long-term dataset covering the 2005-2019 period. Using the forward selection stepwise regression approach, we identify sea surface temperature (SST), soil moisture, and 2-m air temperature as predictors for the model, while rejecting sea ice concentration and snow depth due to weak correlations with seasonal PM concentrations. For the wintertime (December-January-February, DJF), the model based on SSTs over the equatorial Atlantic and soil moisture over the eastern Europe along with the linear PM concentration trend generates a 3-month forecasts that shows a 0.69 correlation with observations. For the springtime (March-April-May, MAM), the accuracy of the model using SSTs over North Pacific and 2-m air temperature over East Asia increases to 0.75. Additionally, we find a linear relationship between the seasonal mean PM concentration and an extreme metric, i.e., seasonal number of high PM concentration days.
The online version contains supplementary material available at 10.1007/s13143-022-00275-4.
由于气候条件的年际变化,朝鲜半岛上空直径小于2.5微米的细颗粒物(PM)浓度逐年变化。本研究基于缓慢变化的边界条件开发了一个多元线性回归模型,以提前1 - 3个月预测冬季和春季的PM浓度。利用首尔地方政府的观测数据,将始于2015年的韩国全国观测数据回溯至2005年,构建了一个涵盖2005 - 2019年的长期数据集。使用向前选择逐步回归方法,我们确定海表面温度(SST)、土壤湿度和2米气温作为模型的预测因子,同时由于与季节性PM浓度的相关性较弱而排除海冰浓度和积雪深度。对于冬季(12月 - 1月 - 2月,DJF),基于赤道大西洋上空的海表面温度和东欧上空的土壤湿度以及线性PM浓度趋势的模型生成的3个月预测与观测值的相关性为0.69。对于春季(3月 - 4月 - 5月,MAM),使用北太平洋上空的海表面温度和东亚上空的2米气温的模型精度提高到0.75。此外,我们发现季节性平均PM浓度与一个极端指标,即高PM浓度天数的季节数量之间存在线性关系。
在线版本包含可在10.1007/s13143 - 022 - 00275 - 4获取的补充材料。