Suppr超能文献

利用大尺度气候模式的统计分析对美国夏季臭氧进行季节性预测。

Seasonal prediction of US summertime ozone using statistical analysis of large scale climate patterns.

作者信息

Shen Lu, Mickley Loretta J

机构信息

John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138

John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138.

出版信息

Proc Natl Acad Sci U S A. 2017 Mar 7;114(10):2491-2496. doi: 10.1073/pnas.1610708114. Epub 2017 Feb 21.

Abstract

We develop a statistical model to predict June-July-August (JJA) daily maximum 8-h average (MDA8) ozone concentrations in the eastern United States based on large-scale climate patterns during the previous spring. We find that anomalously high JJA ozone in the East is correlated with these springtime patterns: warm tropical Atlantic and cold northeast Pacific sea surface temperatures (SSTs), as well as positive sea level pressure (SLP) anomalies over Hawaii and negative SLP anomalies over the Atlantic and North America. We then develop a linear regression model to predict JJA MDA8 ozone from 1980 to 2013, using the identified SST and SLP patterns from the previous spring. The model explains ∼45% of the variability in JJA MDA8 ozone concentrations and ∼30% variability in the number of JJA ozone episodes (>70 ppbv) when averaged over the eastern United States. This seasonal predictability results from large-scale ocean-atmosphere interactions. Warm tropical Atlantic SSTs can trigger diabatic heating in the atmosphere and influence the extratropical climate through stationary wave propagation, leading to greater subsidence, less precipitation, and higher temperatures in the East, which increases surface ozone concentrations there. Cooler SSTs in the northeast Pacific are also associated with more summertime heatwaves and high ozone in the East. On average, models participating in the Atmospheric Model Intercomparison Project fail to capture the influence of this ocean-atmosphere interaction on temperatures in the eastern United States, implying that such models would have difficulty simulating the interannual variability of surface ozone in this region.

摘要

我们开发了一种统计模型,用于根据前一年春季的大规模气候模式预测美国东部6月至7月至8月(JJA)的每日最大8小时平均(MDA8)臭氧浓度。我们发现,东部地区JJA臭氧异常偏高与这些春季模式相关:热带大西洋海面温度(SST)偏高,东北太平洋海面温度偏低,以及夏威夷上空海平面气压(SLP)正异常,大西洋和北美上空SLP负异常。然后,我们开发了一个线性回归模型,利用前一年春季确定的SST和SLP模式来预测1980年至2013年的JJA MDA8臭氧浓度。该模型解释了美国东部地区JJA MDA8臭氧浓度约45%的变异性,以及JJA臭氧事件(>70 ppbv)数量约30%的变异性。这种季节性可预测性源于大规模的海洋-大气相互作用。热带大西洋温暖的SST会引发大气中的非绝热加热,并通过定常波传播影响温带气候,导致东部地区下沉增强、降水减少、温度升高,从而增加该地区的地表臭氧浓度。东北太平洋较冷的SST也与东部地区更多的夏季热浪和高臭氧有关。平均而言,参与大气模式相互比较计划的模型未能捕捉到这种海洋-大气相互作用对美国东部温度的影响,这意味着此类模型在模拟该地区地表臭氧的年际变异性方面存在困难。

相似文献

2
The Recent Atlantic Cold Anomaly: Causes, Consequences, and Related Phenomena.近期北大西洋冷异常:成因、后果及相关现象。
Ann Rev Mar Sci. 2018 Jan 3;10:475-501. doi: 10.1146/annurev-marine-121916-063102. Epub 2017 Sep 15.
6
Relationship between surface and free tropospheric ozone in the Western U.S.美国西部地表与自由对流层臭氧的关系
Environ Sci Technol. 2011 Jan 15;45(2):432-8. doi: 10.1021/es1028102. Epub 2010 Dec 10.
9
The Antarctic ozone hole and the pattern effect on climate sensitivity.南极臭氧洞与对气候敏感性的模式效应。
Proc Natl Acad Sci U S A. 2022 Aug 30;119(35):e2207889119. doi: 10.1073/pnas.2207889119. Epub 2022 Aug 22.
10
Sea surface temperature variability: patterns and mechanisms.海面温度变化:模式与机制。
Ann Rev Mar Sci. 2010;2:115-43. doi: 10.1146/annurev-marine-120408-151453.

引用本文的文献

本文引用的文献

1
Why do Models Overestimate Surface Ozone in the Southeastern United States?为何模型高估了美国东南部的地表臭氧?
Atmos Chem Phys. 2016;16(21):13561-13577. doi: 10.5194/acp-16-13561-2016. Epub 2016 Nov 1.
3
Perception of climate change.气候变化感知。
Proc Natl Acad Sci U S A. 2012 Sep 11;109(37):E2415-23. doi: 10.1073/pnas.1205276109. Epub 2012 Aug 6.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验