Suppr超能文献

物联网导向的医疗保健需求文档中的非功能需求分类。

Classification of Non-Functional Requirements From IoT Oriented Healthcare Requirement Document.

机构信息

Department of Software Engineering, International Islamic University, Islamabad, Pakistan.

Robotics and Internet-of-Things Laboratory, Prince Sultan University, Riyadh, Saudi Arabia.

出版信息

Front Public Health. 2022 Mar 18;10:860536. doi: 10.3389/fpubh.2022.860536. eCollection 2022.

Abstract

Internet of Things (IoT) involves a set of devices that aids in achieving a smart environment. Healthcare systems, which are IoT-oriented, provide monitoring services of patients' data and help take immediate steps in an emergency. Currently, machine learning-based techniques are adopted to ensure security and other non-functional requirements in smart health care systems. However, no attention is given to classifying the non-functional requirements from requirement documents. The manual process of classifying the non-functional requirements from documents is erroneous and laborious. Missing non-functional requirements in the Requirement Engineering (RE) phase results in IoT oriented healthcare system with compromised security and performance. In this research, an experiment is performed where non-functional requirements are classified from the IoT-oriented healthcare system's requirement document. The machine learning algorithms considered for classification are Logistic Regression (LR), Support Vector Machine (SVM), Multinomial Naive Bayes (MNB), K-Nearest Neighbors (KNN), ensemble, Random Forest (RF), and hybrid KNN rule-based machine learning (ML) algorithms. The results show that our novel hybrid KNN rule-based machine learning algorithm outperforms others by showing an average classification accuracy of 75.9% in classifying non-functional requirements from IoT-oriented healthcare requirement documents. This research is not only novel in its concept of using a machine learning approach for classification of non-functional requirements from IoT-oriented healthcare system requirement documents, but it also proposes a novel hybrid KNN-rule based machine learning algorithm for classification with better accuracy. A new dataset is also created for classification purposes, comprising requirements related to IoT-oriented healthcare systems. However, since this dataset is small and consists of only 104 requirements, this might affect the generalizability of the results of this research.

摘要

物联网(IoT)涉及一组设备,可帮助实现智能环境。面向物联网的医疗保健系统提供患者数据的监控服务,并有助于在紧急情况下立即采取措施。目前,基于机器学习的技术被采用,以确保智能医疗保健系统的安全性和其他非功能要求。然而,从需求文档中分类非功能需求并没有得到重视。从文档中手动分类非功能需求是错误且费力的。在需求工程(RE)阶段缺少非功能需求会导致面向物联网的医疗保健系统的安全性和性能受损。在这项研究中,我们从物联网医疗系统的需求文档中进行了非功能需求的分类实验。考虑用于分类的机器学习算法包括逻辑回归(LR)、支持向量机(SVM)、多项式朴素贝叶斯(MNB)、K 近邻(KNN)、集成、随机森林(RF)和混合 KNN 基于规则的机器学习(ML)算法。结果表明,我们的新型混合 KNN 基于规则的机器学习算法通过在物联网医疗需求文档中分类非功能需求的平均分类准确率为 75.9%,优于其他算法。这项研究不仅在使用机器学习方法从物联网医疗系统需求文档中分类非功能需求的概念上具有创新性,而且还提出了一种新的混合 KNN 基于规则的机器学习算法,以提高分类准确性。我们还创建了一个新的数据集用于分类,其中包含与物联网医疗系统相关的需求。然而,由于这个数据集较小,只有 104 个需求,这可能会影响这项研究结果的通用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ae9/8974737/11c2d7115d0c/fpubh-10-860536-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验