Suppr超能文献

用于早期检测心脏骤停状况和风险的智能心脏框架。

Smart Cardiac Framework for an Early Detection of Cardiac Arrest Condition and Risk.

作者信息

Shah Apeksha, Ahirrao Swati, Pandya Sharnil, Kotecha Ketan, Rathod Suresh

机构信息

Computer Science Department, Symbiosis Institute of Technology, Symbiosis International (Deemed University), Pune, India.

Symbiosis Centre for Applied Artificial Intelligence, Symbiosis Institute of Technology, Symbiosis International (Deemed University), Pune, India.

出版信息

Front Public Health. 2021 Oct 22;9:762303. doi: 10.3389/fpubh.2021.762303. eCollection 2021.

Abstract

Cardiovascular disease (CVD) is considered to be one of the most epidemic diseases in the world today. Predicting CVDs, such as cardiac arrest, is a difficult task in the area of healthcare. The healthcare industry has a vast collection of datasets for analysis and prediction purposes. Somehow, the predictions made on these publicly available datasets may be erroneous. To make the prediction accurate, real-time data need to be collected. This study collected real-time data using sensors and stored it on a cloud computing platform, such as Google Firebase. The acquired data is then classified using six machine-learning algorithms: Artificial Neural Network (ANN), Random Forest Classifier (RFC), Gradient Boost Extreme Gradient Boosting (XGBoost) classifier, Support Vector Machine (SVM), Naïve Bayes (NB), and Decision Tree (DT). Furthermore, we have presented two novel gender-based risk classification and age-wise risk classification approach in the undertaken study. The presented approaches have used Kaplan-Meier and Cox regression survival analysis methodologies for risk detection and classification. The presented approaches also assist health experts in identifying the risk probability risk and the 10-year risk score prediction. The proposed system is an economical alternative to the existing system due to its low cost. The outcome obtained shows an enhanced level of performance with an overall accuracy of 98% using DT on our collected dataset for cardiac risk prediction. We also introduced two risk classification models for gender- and age-wise people to detect their survival probability. The outcome of the proposed model shows accurate probability in both classes.

摘要

心血管疾病(CVD)被认为是当今世界上最流行的疾病之一。预测诸如心脏骤停等心血管疾病是医疗保健领域的一项艰巨任务。医疗保健行业拥有大量用于分析和预测目的的数据集。然而,基于这些公开可用数据集所做的预测可能是错误的。为了使预测准确,需要收集实时数据。本研究使用传感器收集实时数据,并将其存储在云计算平台上,如谷歌Firebase。然后,使用六种机器学习算法对获取的数据进行分类:人工神经网络(ANN)、随机森林分类器(RFC)、梯度提升极端梯度提升(XGBoost)分类器、支持向量机(SVM)、朴素贝叶斯(NB)和决策树(DT)。此外,在本研究中,我们提出了两种基于性别的新型风险分类和按年龄划分的风险分类方法。所提出的方法使用了Kaplan-Meier和Cox回归生存分析方法进行风险检测和分类。所提出的方法还协助健康专家识别风险概率和10年风险评分预测。由于成本低,所提出的系统是现有系统的一种经济替代方案。在我们收集的用于心脏风险预测的数据集上,使用DT获得的结果显示性能水平有所提高,总体准确率达到98%。我们还为不同性别的人和不同年龄段的人引入了两种风险分类模型,以检测他们的生存概率。所提出模型的结果在两个类别中都显示出准确的概率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1204/8569303/c72468354383/fpubh-09-762303-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验