Systems Biology Research Group, Department of Bioengineering, University of California San Diego, CA 92122.
Department of Chemical Engineering, Queen's University, Kingston, ON K7L 3N6, Canada.
Proc Natl Acad Sci U S A. 2020 Mar 17;117(11):6264-6273. doi: 10.1073/pnas.1910499117. Epub 2020 Mar 4.
Auxotrophies constrain the interactions of bacteria with their environment, but are often difficult to identify. Here, we develop an algorithm (AuxoFind) using genome-scale metabolic reconstruction to predict auxotrophies and apply it to a series of available genome sequences of over 1,300 Gram-negative strains. We identify 54 auxotrophs, along with the corresponding metabolic and genetic basis, using a pangenome approach, and highlight auxotrophies conferring a fitness advantage in vivo. We show that the metabolic basis of auxotrophy is species-dependent and varies with 1) pathway structure, 2) enzyme promiscuity, and 3) network redundancy. Various levels of complexity constitute the genetic basis, including 1) deleterious single-nucleotide polymorphisms (SNPs), in-frame indels, and deletions; 2) single/multigene deletion; and 3) movement of mobile genetic elements (including prophages) combined with genomic rearrangements. Fourteen out of 19 predictions agree with experimental evidence, with the remaining cases highlighting shortcomings of sequencing, assembly, annotation, and reconstruction that prevent predictions of auxotrophies. We thus develop a framework to identify the metabolic and genetic basis for auxotrophies in Gram-negatives.
营养缺陷型限制了细菌与其环境的相互作用,但通常难以识别。在这里,我们开发了一种使用基因组规模代谢重建来预测营养缺陷型的算法(AuxoFind),并将其应用于一系列可用的超过 1300 种革兰氏阴性菌株的基因组序列。我们使用泛基因组方法确定了 54 种营养缺陷型,以及相应的代谢和遗传基础,并强调了在体内赋予适应性优势的营养缺陷型。我们表明,营养缺陷型的代谢基础是依赖于物种的,并且随 1)途径结构、2)酶的多功能性和 3)网络冗余而变化。遗传基础的各种复杂程度包括 1)有害的单核苷酸多态性(SNP)、框内插入缺失和缺失;2)单个/多个基因缺失;以及 3)移动遗传元件(包括噬菌体)的移动与基因组重排相结合。19 个预测中有 14 个与实验证据一致,其余情况突出了测序、组装、注释和重建的缺点,这些缺点阻止了对营养缺陷型的预测。因此,我们开发了一个框架来确定革兰氏阴性菌营养缺陷型的代谢和遗传基础。