Myers P L, Skvirsky R C, Greenberg M L, Greer H
Mol Cell Biol. 1986 Sep;6(9):3150-5. doi: 10.1128/mcb.6.9.3150-3155.1986.
In Saccharomyces cerevisiae, many amino acid biosynthetic pathways are coregulated by a complex general control system: starvation for a single amino acid results in the derepression of amino acid biosynthetic genes in multiple pathways. Derepression of these genes is mediated by positive (GCN) and negative (GCD) regulatory genes. In this paper we describe the isolation and characterization of a previously unreported negative regulatory gene, GCD3. A gcd3 mutation is recessive to wild type, confers resistance to multiple amino acid analogs, and results in overproduction and partially constitutive elevation of mRNA levels for amino acid biosynthetic genes. Furthermore, a gcd3 mutation can overcome the derepression-deficient phenotype of mutations in the positive regulatory GCN1, GCN2, and GCN3 genes. However, the gcd3 mutation cannot overcome the derepression-deficient phenotype of a gcn4 mutation, suggesting that GCD3 acts as a negative regulator of the important GCN4 gene. Northern blot analysis confirmed this conclusion, in that the steady-state levels of GCN4 mRNA are greatly increased in a gcd3 mutant. Thus, the negative regulatory gene GCD3 plays a central role in derepression of amino acid biosynthetic genes.
在酿酒酵母中,许多氨基酸生物合成途径由一个复杂的全局控制系统共同调控:单一氨基酸饥饿会导致多个途径中氨基酸生物合成基因的去阻遏。这些基因的去阻遏由正向(GCN)和负向(GCD)调控基因介导。在本文中,我们描述了一个先前未报道的负向调控基因GCD3的分离和特性。gcd3突变相对于野生型是隐性的,赋予对多种氨基酸类似物的抗性,并导致氨基酸生物合成基因的过量产生和mRNA水平的部分组成型升高。此外,gcd3突变可以克服正向调控GCN1、GCN2和GCN3基因突变的去阻遏缺陷表型。然而,gcd3突变不能克服gcn4突变的去阻遏缺陷表型,这表明GCD3作为重要的GCN4基因的负向调控因子发挥作用。Northern印迹分析证实了这一结论,因为在gcd3突变体中GCN4 mRNA的稳态水平大大增加。因此,负向调控基因GCD3在氨基酸生物合成基因的去阻遏中起核心作用。