Department of Digital Forensics Engineering, Technology Faculty, Firat University, Elazig, Turkey.
School of Management & Enterprise, University of Southern Queensland, Australia.
Physiol Meas. 2022 Apr 4;43(3). doi: 10.1088/1361-6579/ac59dc.
The main objective of this work is to present a hand-modelled one-dimensional signal classification system to detect Attention-Deficit Hyperactivity Disorder (ADHD) disorder using electroencephalography (EEG) signals.A novel handcrafted feature extraction method is presented in this research. Our proposed method uses a directed graph and an eight-pointed star pattern (EPSPat). Also, tunable q wavelet transforms (TQWT), wavelet packet decomposition (WPD), statistical extractor, iterative Chi2 (IChi2) selector, and the k-nearest neighbors (kNN) classifier have been utilized to develop the EPSPat based learning model. This network uses two wavelet decomposition methods (TQWT and WPD), and 85 wavelet coefficient bands are extracted. The proposed EPSPat and statistical feature creator generate features from the 85 wavelet coefficient bands and the original EEG signal. The learning network is termed EPSPatNet86. The main purpose of the presented EPSPatNet86 is to detect abnormalities of the EEG signals. Therefore, 85 wavelet subbands have been generated to extract features. The created 86 feature vectors have been evaluated using the Chi2 selector and the kNN classifier in the loss value calculation phase. The final features vector is created by employing a minimum loss-valued eight feature vectors. The IChi2 selector selects the best feature vector, which is fed to the kNN classifier. An EEG signal dataset has been used to demonstrate the presented model's EEG signal classification ability. We have used an ADHD EEG dataset since ADHD is a commonly seen brain-related ailment.Our developed EPSPatNet86 model can detect the ADHD EEG signals with 97.19% and 87.60% accuracy using 10-fold cross and subject-wise validations, respectively.The calculated results demonstrate that the presented EPSPatNet86 attained satisfactory EEG classification ability. Results show that we can apply our developed EPSPatNet86 model to other EEG signal datasets to detect abnormalities.
这项工作的主要目的是提出一种基于手工建模的一维信号分类系统,使用脑电图 (EEG) 信号来检测注意力缺陷多动障碍 (ADHD) 障碍。本研究提出了一种新颖的手工特征提取方法。我们提出的方法使用有向图和八叉星模式 (EPSPat)。此外,还利用可调 q 小波变换 (TQWT)、小波包分解 (WPD)、统计提取器、迭代 Chi2 (IChi2) 选择器和 k-最近邻 (kNN) 分类器来开发基于 EPSPat 的学习模型。该网络使用两种小波分解方法 (TQWT 和 WPD),提取 85 个小波系数带。提出的 EPSPat 和统计特征生成器从 85 个小波系数带和原始 EEG 信号中生成特征。该学习网络被称为 EPSPatNet86。提出的 EPSPatNet86 的主要目的是检测 EEG 信号的异常。因此,生成了 85 个子波带以提取特征。在损失值计算阶段,通过使用 Chi2 选择器和 kNN 分类器对创建的 86 个特征向量进行评估。通过采用具有最小损失值的八个特征向量来创建最终的特征向量。IChi2 选择器选择最佳特征向量,将其输入 kNN 分类器。我们使用 ADHD EEG 数据集来演示所提出的模型的 EEG 信号分类能力。ADHD 是一种常见的脑部疾病,我们使用了 ADHD EEG 数据集。我们开发的 EPSPatNet86 模型可以分别使用 10 折交叉验证和基于主题的验证以 97.19%和 87.60%的准确率检测 ADHD EEG 信号。计算结果表明,所提出的 EPSPatNet86 达到了令人满意的 EEG 分类能力。结果表明,我们可以将我们开发的 EPSPatNet86 模型应用于其他 EEG 信号数据集以检测异常。