Suppr超能文献

基于灵长类动物脑模式的脑电图信号自动阿尔茨海默病检测模型

Primate brain pattern-based automated Alzheimer's disease detection model using EEG signals.

作者信息

Dogan Sengul, Baygin Mehmet, Tasci Burak, Loh Hui Wen, Barua Prabal D, Tuncer Turker, Tan Ru-San, Acharya U Rajendra

机构信息

Department of Digital Forensics Engineering, College of Technology, Firat University, Elazig, Turkey.

Department of Computer Engineering, College of Engineering, Ardahan University, Ardahan, Turkey.

出版信息

Cogn Neurodyn. 2023 Jun;17(3):647-659. doi: 10.1007/s11571-022-09859-2. Epub 2022 Aug 12.

Abstract

Electroencephalography (EEG) may detect early changes in Alzheimer's disease (AD), a debilitating progressive neurodegenerative disease. We have developed an automated AD detection model using a novel directed graph for local texture feature extraction with EEG signals. The proposed graph was created from a topological map of the macroscopic connectome, i.e., neuronal pathways linking anatomo-functional brain segments involved in visual object recognition and motor response in the primate brain. This primate brain pattern (PBP)-based model was tested on a public AD EEG signal dataset. The dataset comprised 16-channel EEG signal recordings of 12 AD patients and 11 healthy controls. While PBP could generate 448 low-level features per one-dimensional EEG signal, combining it with tunable q-factor wavelet transform created a multilevel feature extractor (which mimicked deep models) to generate 8,512 (= 448 × 19) features per signal input. Iterative neighborhood component analysis was used to choose the most discriminative features (the number of optimal features varied among the individual EEG channels) to feed to a weighted k-nearest neighbor (KNN) classifier for binary classification into AD vs. healthy using both leave-one subject-out (LOSO) and tenfold cross-validations. Iterative majority voting was used to compute subject-level general performance results from the individual channel classification outputs. Channel-wise, as well as subject-level general results demonstrated exemplary performance. In addition, the model attained 100% and 92.01% accuracy for AD vs. healthy classification using the KNN classifier with tenfold and LOSO cross-validations, respectively. Our developed multilevel PBP-based model extracted discriminative features from EEG signals and paved the way for further development of models inspired by the brain connectome.

摘要

脑电图(EEG)可能检测出阿尔茨海默病(AD)的早期变化,AD是一种使人衰弱的进行性神经退行性疾病。我们利用一种新颖的有向图开发了一种自动AD检测模型,用于从EEG信号中提取局部纹理特征。所提出的图是根据宏观连接组的拓扑图创建的,即连接灵长类大脑中参与视觉物体识别和运动反应的解剖功能脑段的神经元通路。这个基于灵长类大脑模式(PBP)的模型在一个公开的AD EEG信号数据集上进行了测试。该数据集包含12名AD患者和11名健康对照的16通道EEG信号记录。虽然PBP每一个一维EEG信号可以生成448个低级特征,但将其与可调q因子小波变换相结合创建了一个多级特征提取器(模仿深度模型),每个信号输入可生成8512(=448×19)个特征。使用迭代邻域成分分析来选择最具判别力的特征(最优特征的数量在各个EEG通道中有所不同),并将其输入到加权k近邻(KNN)分类器中,使用留一法(LOSO)和十折交叉验证进行AD与健康对照的二分类。使用迭代多数投票从各个通道分类输出中计算受试者水平的总体性能结果。通道层面以及受试者水平的总体结果都显示出了优异的性能。此外,该模型在使用十折交叉验证和LOSO交叉验证的KNN分类器进行AD与健康对照分类时,准确率分别达到了100%和92.01%。我们开发的基于多级PBP的模型从EEG信号中提取了判别性特征,为受大脑连接组启发的模型的进一步发展铺平了道路。

相似文献

引用本文的文献

6
Alzheimer Disease Detection Studies: Perspective on Multi-Modal Data.阿尔茨海默病检测研究:多模态数据视角
Yearb Med Inform. 2024 Aug;33(1):266-276. doi: 10.1055/s-0044-1800756. Epub 2025 Apr 8.

本文引用的文献

1
Aleatory-aware deep uncertainty quantification for transfer learning.用于迁移学习的随机感知深度不确定性量化
Comput Biol Med. 2022 Apr;143:105246. doi: 10.1016/j.compbiomed.2022.105246. Epub 2022 Jan 24.
8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验