Biomacromolecules Research Team, Center for Sustainable Resource Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
Department of Material Chemistry, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan.
Biomacromolecules. 2022 May 9;23(5):1827-1840. doi: 10.1021/acs.biomac.1c01682. Epub 2022 Apr 4.
The tiny spider makes dragline silk fibers with unbeatable toughness, all under the most innocuous conditions. Scientists have persistently tried to emulate its natural silk spinning process using recombinant proteins with a view toward creating a new wave of smart materials, yet most efforts have fallen short of attaining the native fiber's excellent mechanical properties. One reason for these shortcomings may be that artificial spider silk systems tend to be overly simplified and may not sufficiently take into account the true complexity of the underlying protein sequences and of the multidimensional aspects of the natural self-assembly process that give rise to the hierarchically structured fibers. Here, we discuss recent findings regarding the material constituents of spider dragline silk, including novel spidroin subtypes, nonspidroin proteins, and possible involvement of post-translational modifications, which together suggest a complexity that transcends the two-component MaSp1/MaSp2 system. We subsequently consider insights into the spidroin domain functions, structures, and overall mechanisms for the rapid transition from disordered soluble protein into a highly organized fiber, including the possibility of viewing spider silk self-assembly through a framework relevant to biomolecular condensates. Finally, we consider the concept of "biomimetics" as it applies to artificial spider silk production with a focus on key practical aspects of design and evaluation that may hopefully inform efforts to more closely reproduce the remarkable structure and function of the native silk fiber using artificial methods.
这种微小的蜘蛛在最无害的条件下就能制造出具有无与伦比韧性的拖丝纤维。科学家们一直试图使用重组蛋白来模拟其天然的丝纺过程,以期创造出新一代的智能材料,但大多数努力都未能达到天然纤维的优异机械性能。造成这些缺点的一个原因可能是,人工蜘蛛丝系统往往过于简化,可能没有充分考虑到潜在蛋白质序列的真正复杂性,以及导致具有层次结构纤维的自然自组装过程的多维方面。在这里,我们讨论了关于蜘蛛拖丝的材料成分的最新发现,包括新型丝氨酸蛋白亚型、非丝氨酸蛋白,以及可能涉及的翻译后修饰,这些发现共同表明了一种复杂性,超越了由 MaSp1/MaSp2 两个成分组成的系统。随后,我们考虑了对丝氨酸蛋白结构域功能、结构以及从无规可溶性蛋白到高度有序纤维的快速转变的整体机制的深入了解,包括通过与生物分子凝聚物相关的框架来观察蜘蛛丝自组装的可能性。最后,我们考虑了仿生学的概念,因为它适用于人工蜘蛛丝的生产,重点是设计和评估的关键实际方面,这些方面有望为使用人工方法更紧密地复制天然丝纤维的出色结构和功能提供信息。