State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China.
State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China.
Sci Total Environ. 2022 Aug 1;832:154987. doi: 10.1016/j.scitotenv.2022.154987. Epub 2022 Apr 2.
As an important member of transition-metal dichalcogenides family, tungsten disulfides nanomaterials (WS NMs) have a wide range of applications. To date, their environmental risks remain largely unknown. In this study, rice plants were grown in soil amended with different concentrations (0, 10, and 100 mg/kg) of WS NMs for 4 weeks. WS NMs at 100 mg/kg significantly increased MDA (malondialdehyde) content and decreased total antioxidant capacities of leaves, indicating the oxidative response induced by WS NMs. Meanwhile, WS NMs at 100 mg/kg significantly decreased root biomass compared to control, indicating the negative impacts of WS NMs on plant growth. While exposure to 100 mg/kg WS NMs significantly increased soil bioavailable Cu, Fe, Zn, and Olsen-P, and increased the content of Cu, Fe, Zn, and P in rice leaves. Inductively coupled plasma-optical emission spectroscopy (ICP-OES) analysis showed that W was taken up by rice roots and translocated into leaves. The impact of WS on soil microbial communities was evaluated by 16S rRNA gene sequencing. WS NMs at 100 mg/kg significantly decreased soil microbial diversity, as indicated by decreased Shannon index. In addition, 100 mg/kg WS shifted the soil microbial profile, the relative abundance of the phylum Acidobacteriota decreased, and Actinobacteriota increased. Taken together, the soil microbial community's diversity and composition have been altered upon exposure to 100 mg/kg WS NMs. The results of this study provide some basic information regarding the environmental behavior and phytotoxicity of WS NMs, which is valuable for safe use of WS NMs.
作为过渡金属二硫属化物家族的重要成员,二硫化钨纳米材料(WS NMs)具有广泛的应用。迄今为止,它们的环境风险在很大程度上尚不清楚。在本研究中,将水稻种植在添加不同浓度(0、10 和 100 mg/kg)WS NMs 的土壤中 4 周。100 mg/kg 的 WS NMs 显著增加了叶片的 MDA(丙二醛)含量并降低了总抗氧化能力,表明 WS NMs 诱导了氧化反应。同时,与对照相比,100 mg/kg 的 WS NMs 显著降低了根生物量,表明 WS NMs 对植物生长有负面影响。而暴露于 100 mg/kg 的 WS NMs 显著增加了土壤中生物可利用的 Cu、Fe、Zn 和 Olsen-P 的含量,并增加了水稻叶片中 Cu、Fe、Zn 和 P 的含量。电感耦合等离子体发射光谱(ICP-OES)分析表明,W 被水稻根系吸收并转运到叶片中。通过 16S rRNA 基因测序评估 WS 对土壤微生物群落的影响。100 mg/kg 的 WS NMs 显著降低了土壤微生物多样性,表现为 Shannon 指数降低。此外,100 mg/kg 的 WS 改变了土壤微生物的组成,厚壁菌门(Acidobacteriota)的相对丰度降低,放线菌门(Actinobacteriota)增加。综上所述,土壤微生物群落的多样性和组成在暴露于 100 mg/kg 的 WS NMs 后发生了变化。本研究结果为 WS NMs 的环境行为和植物毒性提供了一些基本信息,这对于 WS NMs 的安全使用具有重要价值。