文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用 CT 放射组学特征和机器学习算法对 COVID-19 进行预后建模:对来自 14339 名患者的多机构数据集的分析。

COVID-19 prognostic modeling using CT radiomic features and machine learning algorithms: Analysis of a multi-institutional dataset of 14,339 patients.

机构信息

Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, 1211, Switzerland.

Imaging Department, Qom University of Medical Sciences, Qum, Iran.

出版信息

Comput Biol Med. 2022 Jun;145:105467. doi: 10.1016/j.compbiomed.2022.105467. Epub 2022 Mar 29.


DOI:10.1016/j.compbiomed.2022.105467
PMID:35378436
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8964015/
Abstract

BACKGROUND: We aimed to analyze the prognostic power of CT-based radiomics models using data of 14,339 COVID-19 patients. METHODS: Whole lung segmentations were performed automatically using a deep learning-based model to extract 107 intensity and texture radiomics features. We used four feature selection algorithms and seven classifiers. We evaluated the models using ten different splitting and cross-validation strategies, including non-harmonized and ComBat-harmonized datasets. The sensitivity, specificity, and area under the receiver operating characteristic curve (AUC) were reported. RESULTS: In the test dataset (4,301) consisting of CT and/or RT-PCR positive cases, AUC, sensitivity, and specificity of 0.83 ± 0.01 (CI95%: 0.81-0.85), 0.81, and 0.72, respectively, were obtained by ANOVA feature selector + Random Forest (RF) classifier. Similar results were achieved in RT-PCR-only positive test sets (3,644). In ComBat harmonized dataset, Relief feature selector + RF classifier resulted in the highest performance of AUC, reaching 0.83 ± 0.01 (CI95%: 0.81-0.85), with a sensitivity and specificity of 0.77 and 0.74, respectively. ComBat harmonization did not depict statistically significant improvement compared to a non-harmonized dataset. In leave-one-center-out, the combination of ANOVA feature selector and RF classifier resulted in the highest performance. CONCLUSION: Lung CT radiomics features can be used for robust prognostic modeling of COVID-19. The predictive power of the proposed CT radiomics model is more reliable when using a large multicentric heterogeneous dataset, and may be used prospectively in clinical setting to manage COVID-19 patients.

摘要

背景:我们旨在使用来自 14339 例 COVID-19 患者的数据,分析基于 CT 的放射组学模型的预后能力。

方法:使用基于深度学习的模型自动进行全肺分段,以提取 107 个强度和纹理放射组学特征。我们使用了四种特征选择算法和七种分类器。我们使用十种不同的分割和交叉验证策略(包括非协调和 ComBat 协调数据集)评估模型。报告了灵敏度、特异性和接收器操作特征曲线(AUC)下的面积。

结果:在包含 CT 和/或 RT-PCR 阳性病例的测试数据集(4301 例)中,通过方差分析特征选择器+随机森林(RF)分类器,AUC、灵敏度和特异性分别为 0.83±0.01(95%CI:0.81-0.85)、0.81 和 0.72。在仅 RT-PCR 阳性的测试集中也得到了类似的结果(3644 例)。在 ComBat 协调数据集中,Relief 特征选择器+RF 分类器的 AUC 性能最高,达到 0.83±0.01(95%CI:0.81-0.85),灵敏度和特异性分别为 0.77 和 0.74。与非协调数据集相比,ComBat 协调并未显示出统计学上的显著改善。在留一中心外,使用方差分析特征选择器和 RF 分类器的组合可获得最高性能。

结论:肺部 CT 放射组学特征可用于稳健预测 COVID-19 的预后。当使用大型多中心异质数据集时,所提出的 CT 放射组学模型的预测能力更可靠,并且可能在临床环境中前瞻性地用于管理 COVID-19 患者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2d4/8964015/cf8f2a272000/gr10_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2d4/8964015/cd915aa2cd0d/ga1_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2d4/8964015/0652cb98c529/gr1_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2d4/8964015/724244131ad8/gr2_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2d4/8964015/56d829b4c835/gr3_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2d4/8964015/9f77a849f1de/gr4_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2d4/8964015/ba272ace0b34/gr5_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2d4/8964015/b701acb4901b/gr6_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2d4/8964015/8789a39f6f18/gr7_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2d4/8964015/aa893dc4938d/gr8_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2d4/8964015/f76ea1bec9aa/gr9_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2d4/8964015/cf8f2a272000/gr10_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2d4/8964015/cd915aa2cd0d/ga1_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2d4/8964015/0652cb98c529/gr1_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2d4/8964015/724244131ad8/gr2_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2d4/8964015/56d829b4c835/gr3_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2d4/8964015/9f77a849f1de/gr4_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2d4/8964015/ba272ace0b34/gr5_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2d4/8964015/b701acb4901b/gr6_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2d4/8964015/8789a39f6f18/gr7_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2d4/8964015/aa893dc4938d/gr8_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2d4/8964015/f76ea1bec9aa/gr9_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2d4/8964015/cf8f2a272000/gr10_lrg.jpg

相似文献

[1]
COVID-19 prognostic modeling using CT radiomic features and machine learning algorithms: Analysis of a multi-institutional dataset of 14,339 patients.

Comput Biol Med. 2022-6

[2]
Use of radiomics based on F-FDG PET/CT and machine learning methods to aid clinical decision-making in the classification of solitary pulmonary lesions: an innovative approach.

Eur J Nucl Med Mol Imaging. 2021-8

[3]
Screening of COVID-19 based on the extracted radiomics features from chest CT images.

J Xray Sci Technol. 2021

[4]
Machine learning-based radiomics strategy for prediction of cell proliferation in non-small cell lung cancer.

Eur J Radiol. 2019-6-28

[5]
High-dimensional multinomial multiclass severity scoring of COVID-19 pneumonia using CT radiomics features and machine learning algorithms.

Sci Rep. 2022-9-1

[6]
Machine learning-based prognostic modeling using clinical data and quantitative radiomic features from chest CT images in COVID-19 patients.

Comput Biol Med. 2021-5

[7]
The impact of the combat method on radiomics feature compensation and analysis of scanners from different manufacturers.

BMC Med Imaging. 2024-6-6

[8]
Next-Generation Radiogenomics Sequencing for Prediction of EGFR and KRAS Mutation Status in NSCLC Patients Using Multimodal Imaging and Machine Learning Algorithms.

Mol Imaging Biol. 2020-8

[9]
Machine learning-based analysis of Ga-PSMA-11 PET/CT images for estimation of prostate tumor grade.

Phys Eng Sci Med. 2024-6

[10]
Multimodality radiomics prediction of radiotherapy-induced the early proctitis and cystitis in rectal cancer patients: a machine learning study.

Biomed Phys Eng Express. 2023-12-20

引用本文的文献

[1]
Predicting Hospitalization Length in Geriatric Patients Using Artificial Intelligence and Radiomics.

Bioengineering (Basel). 2025-3-31

[2]
Development and multicentric external validation of a prognostic COVID-19 severity model based on thoracic CT.

BMC Med Inform Decis Mak. 2025-4-1

[3]
Predictive Prognostic Factors in Non-Calcific Supraspinatus Tendinopathy Treated with Focused Extracorporeal Shock Wave Therapy: An Artificial Neural Network Approach.

Life (Basel). 2024-5-25

[4]
Predicting oxygen needs in COVID-19 patients using chest radiography multi-region radiomics.

Radiol Phys Technol. 2024-6

[5]
Machine learning-based analysis of Ga-PSMA-11 PET/CT images for estimation of prostate tumor grade.

Phys Eng Sci Med. 2024-6

[6]
Self-reported checklists and quality scoring tools in radiomics: a meta-research.

Eur Radiol. 2024-8

[7]
Computed tomography-based radiomics improves non-invasive diagnosis of Pneumocystis jirovecii pneumonia in non-HIV patients: a retrospective study.

BMC Pulm Med. 2024-1-2

[8]
Multivariable Risk Modelling and Survival Analysis with Machine Learning in SARS-CoV-2 Infection.

J Clin Med. 2023-11-18

[9]
Self-reporting with checklists in artificial intelligence research on medical imaging: a systematic review based on citations of CLAIM.

Eur Radiol. 2024-4

[10]
Radiomics Applications in Spleen Imaging: A Systematic Review and Methodological Quality Assessment.

Diagnostics (Basel). 2023-8-8

本文引用的文献

[1]
Tensor radiomics: paradigm for systematic incorporation of multi-flavoured radiomics features.

Quant Imaging Med Surg. 2023-12-1

[2]
Impact of feature harmonization on radiogenomics analysis: Prediction of EGFR and KRAS mutations from non-small cell lung cancer PET/CT images.

Comput Biol Med. 2022-3

[3]
Non-contrast Cine Cardiac Magnetic Resonance image radiomics features and machine learning algorithms for myocardial infarction detection.

Comput Biol Med. 2022-2

[4]
COLI-Net: Deep learning-assisted fully automated COVID-19 lung and infection pneumonia lesion detection and segmentation from chest computed tomography images.

Int J Imaging Syst Technol. 2022-1

[5]
Overall Survival Prognostic Modelling of Non-small Cell Lung Cancer Patients Using Positron Emission Tomography/Computed Tomography Harmonised Radiomics Features: The Quest for the Optimal Machine Learning Algorithm.

Clin Oncol (R Coll Radiol). 2022-2

[6]
Predicting Mechanical Ventilation and Mortality in COVID-19 Using Radiomics and Deep Learning on Chest Radiographs: A Multi-Institutional Study.

Diagnostics (Basel). 2021-9-30

[7]
Multi-level multi-modality (PET and CT) fusion radiomics: prognostic modeling for non-small cell lung carcinoma.

Phys Med Biol. 2021-10-14

[8]
Non-small cell lung carcinoma histopathological subtype phenotyping using high-dimensional multinomial multiclass CT radiomics signature.

Comput Biol Med. 2021-9

[9]
Overall Survival Prediction in Renal Cell Carcinoma Patients Using Computed Tomography Radiomic and Clinical Information.

J Digit Imaging. 2021-10

[10]
Artificial intelligence-driven assessment of radiological images for COVID-19.

Comput Biol Med. 2021-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索