Suppr超能文献

使用高维多项多类CT影像组学特征对非小细胞肺癌组织病理学亚型进行表型分析。

Non-small cell lung carcinoma histopathological subtype phenotyping using high-dimensional multinomial multiclass CT radiomics signature.

作者信息

Khodabakhshi Zahra, Mostafaei Shayan, Arabi Hossein, Oveisi Mehrdad, Shiri Isaac, Zaidi Habib

机构信息

Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Science, Tehran, Iran.

Department of Biostatistics, School of Health, Kermanshah University of Medical Sciences, Kermanshah, Iran; Epidemiology and Biostatistics Unit, Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran.

出版信息

Comput Biol Med. 2021 Sep;136:104752. doi: 10.1016/j.compbiomed.2021.104752. Epub 2021 Aug 8.

Abstract

OBJECTIVE

The aim of this study was to identify the most important features and assess their discriminative power in the classification of the subtypes of NSCLC.

METHODS

This study involved 354 pathologically proven NSCLC patients including 134 squamous cell carcinoma (SCC), 110 large cell carcinoma (LCC), 62 not other specified (NOS), and 48 adenocarcinoma (ADC). In total, 1433 radiomics features were extracted from 3D volumes of interest drawn on the malignant lesion identified on CT images. Wrapper algorithm and multivariate adaptive regression splines were implemented to identify the most relevant/discriminative features. A multivariable multinomial logistic regression was employed with 1000 bootstrapping samples based on the selected features to classify four main subtypes of NSCLC.

RESULTS

The results revealed that the texture features, specifically gray level size zone matrix features (GLSZM), were the significant indicators of NSCLC subtypes. The optimized classifier achieved an average precision, recall, F1-score, and accuracy of 0.710, 0.703, 0.706, and 0.865, respectively, based on the selected features by the wrapper algorithm.

CONCLUSIONS

Our CT radiomics approach demonstrated impressive potential for the classification of the four main histological subtypes of NSCLC, It is anticipated that CT radiomics could be useful in treatment planning and precision medicine.

摘要

目的

本研究旨在确定最重要的特征,并评估其在非小细胞肺癌(NSCLC)亚型分类中的判别能力。

方法

本研究纳入354例经病理证实的NSCLC患者,其中包括134例鳞状细胞癌(SCC)、110例大细胞癌(LCC)、62例未另行特指(NOS)和48例腺癌(ADC)。总共从CT图像上识别出的恶性病变的3D感兴趣体积中提取了1433个影像组学特征。采用包装算法和多元自适应回归样条来识别最相关/有判别力的特征。基于选定的特征,采用多变量多项逻辑回归和1000个自抽样样本对NSCLC的四种主要亚型进行分类。

结果

结果显示,纹理特征,特别是灰度大小区域矩阵特征(GLSZM),是NSCLC亚型的重要指标。基于包装算法选定的特征,优化后的分类器的平均精度、召回率、F1分数和准确率分别达到0.710、0.703、0.706和0.865。

结论

我们的CT影像组学方法在NSCLC四种主要组织学亚型的分类中显示出巨大潜力。预计CT影像组学在治疗规划和精准医学中可能会有用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验