Suppr超能文献

基于机器学习和量化宽松的中国经济预测。

China's Economic Forecast Based on Machine Learning and Quantitative Easing.

机构信息

School of Statistics and Management, Shanghai University of Finance and Economics, Shanghai 200433, China.

出版信息

Comput Intell Neurosci. 2022 Mar 26;2022:2404174. doi: 10.1155/2022/2404174. eCollection 2022.

Abstract

In this paper, six variables, including export value, real exchange rate, Chinese GDP, and US IPI, and their seasonal variables, are used as determinants to model and forecast China's export value to the US using three methods: BP neural network, ARIMA, and AR-GARCH. Error indicators were chosen to compare the simulated and predicted results of the three models with the real values. It is found that the results of all three models are satisfactory, although there are some differences in their simulation and forecasting capabilities, but the ARIMA model has a clear advantage. This paper analyses the reasons for these results and proposes suggestions for improving China's exports in the context of the models.

摘要

本文使用六个变量,包括出口值、实际汇率、中国 GDP 和美国 IPI 及其季节性变量,作为决定因素,使用 BP 神经网络、ARIMA 和 AR-GARCH 三种方法对中国对美出口进行建模和预测。选择误差指标来比较三种模型的模拟和预测结果与实际值之间的差异。结果发现,虽然三种模型的模拟和预测能力存在一些差异,但结果都令人满意,其中 ARIMA 模型具有明显优势。本文分析了这些结果的原因,并根据模型提出了改善中国出口的建议。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验