Suppr超能文献

基于混合特征的独立压缩最近邻模型的高效内容图像检索系统。

Effective CBMIR System Using Hybrid Features-Based Independent Condensed Nearest Neighbor Model.

作者信息

Praveena Hirald Dwaraka, Guptha Nirmala S, Kazemzadeh Afsaneh, Parameshachari B D, Hemalatha K L

机构信息

Department of Electronics and Communication Engineering, Sree Vidyanikethan Engineering College, Tirupati 517102, Andhra Pradesh, India.

Department of CSE-Artificial Intelligence, Sri Venkateshwara College of Engineering, Bengaluru 562157, India.

出版信息

J Healthc Eng. 2022 Mar 26;2022:3297316. doi: 10.1155/2022/3297316. eCollection 2022.

Abstract

In recent times, a large number of medical images are generated, due to the evolution of digital imaging modalities and computer vision application. Due to variation in the shape and size of the images, the retrieval task becomes more tedious in the large medical databases. So, it is essential in designing an effective automated system for medical image retrieval. In this research study, the input medical images are acquired from new Pap smear dataset, and then, the visible quality of acquired medical images is improved by applying image normalization technique. Furthermore, the hybrid feature extraction is accomplished using histogram of oriented gradients and modified local binary pattern to extract the color and texture feature vectors that significantly reduces the semantic gap between the feature vectors. The obtained feature vectors are fed to the independent condensed nearest neighbor classifier to classify the seven classes of cell images. Finally, relevant medical images are retrieved using chi square distance measure. Simulation results confirmed that the proposed model obtained effective performance in image retrieval in light of specificity, recall, precision, accuracy, and f-score. The proposed model almost achieved 98.88% of retrieval accuracy, which is better compared to other deep learning models such as long short-term memory network, deep neural network, and convolutional neural network.

摘要

近年来,由于数字成像方式和计算机视觉应用的发展,产生了大量的医学图像。由于图像的形状和大小存在差异,在大型医学数据库中进行检索任务变得更加繁琐。因此,设计一个有效的医学图像检索自动化系统至关重要。在本研究中,输入的医学图像从新的巴氏涂片数据集获取,然后通过应用图像归一化技术提高所获取医学图像的可见质量。此外,使用定向梯度直方图和改进的局部二值模式完成混合特征提取,以提取颜色和纹理特征向量,这显著减少了特征向量之间的语义差距。将获得的特征向量输入到独立凝聚最近邻分类器中,对七类细胞图像进行分类。最后,使用卡方距离度量检索相关医学图像。仿真结果证实,所提出的模型在特异性、召回率、精度、准确率和F值方面在图像检索中获得了有效的性能。所提出的模型几乎实现了98.88%的检索准确率,与其他深度学习模型如长短期记忆网络、深度神经网络和卷积神经网络相比表现更好。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e99/8976656/c8791226a3f9/JHE2022-3297316.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验