Kundu Malay Kumar, Chowdhury Manish, Das Sudeb
Machine Intelligence Unit, Indian Statistical Institute, Kolkata 700108, India.
KTH, School of Technology and Health, Hälsovägen 11c, SE-14157 Huddinge, Sweden.
Comput Methods Programs Biomed. 2017 Feb;139:209-220. doi: 10.1016/j.cmpb.2016.10.023. Epub 2016 Dec 14.
Content based medical image retrieval (CBMIR) systems enable fast diagnosis through quantitative assessment of the visual information and is an active research topic over the past few decades. Most of the state-of-the-art CBMIR systems suffer from various problems: computationally expensive due to the usage of high dimensional feature vectors and complex classifier/clustering schemes. Inability to properly handle the "semantic gap" and the high intra-class versus inter-class variability problem of the medical image database (like radiographic image database). This yields an exigent demand for developing highly effective and computationally efficient retrieval system.
We propose a novel interactive two-stage CBMIR system for diverse collection of medical radiographic images. Initially, Pulse Coupled Neural Network based shape features are used to find out the most probable (similar) image classes using a novel "similarity positional score" mechanism. This is followed by retrieval using Non-subsampled Contourlet Transform based texture features considering only the images of the pre-identified classes. Maximal information compression index is used for unsupervised feature selection to achieve better results. To reduce the semantic gap problem, the proposed system uses a novel fuzzy index based relevance feedback mechanism by incorporating subjectivity of human perception in an analytic manner.
Extensive experiments were carried out to evaluate the effectiveness of the proposed CBMIR system on a subset of Image Retrieval in Medical Applications (IRMA)-2009 database consisting of 10,902 labeled radiographic images of 57 different modalities. We obtained overall average precision of around 98% after only 2-3 iterations of relevance feedback mechanism. We assessed the results by comparisons with some of the state-of-the-art CBMIR systems for radiographic images.
Unlike most of the existing CBMIR systems, in the proposed two-stage hierarchical framework, main importance is given on constructing efficient and compact feature vector representation, search-space reduction and handling the "semantic gap" problem effectively, without compromising the retrieval performance. Experimental results and comparisons show that the proposed system performs efficiently in the radiographic medical image retrieval field.
基于内容的医学图像检索(CBMIR)系统通过对视觉信息进行定量评估实现快速诊断,是过去几十年中一个活跃的研究课题。大多数先进的CBMIR系统存在各种问题:由于使用高维特征向量和复杂的分类器/聚类方案,计算成本高昂。无法妥善处理“语义鸿沟”以及医学图像数据库(如放射影像数据库)中类内差异大与类间差异大的问题。这就迫切需要开发高效且计算效率高的检索系统。
我们提出了一种新颖的交互式两阶段CBMIR系统,用于多种医学放射图像的收集。首先,基于脉冲耦合神经网络的形状特征用于通过一种新颖的“相似性位置得分”机制找出最可能(相似)的图像类别。接下来,仅考虑预先确定类别的图像,使用基于非下采样Contourlet变换的纹理特征进行检索。最大信息压缩指数用于无监督特征选择以获得更好的结果。为了减少语义鸿沟问题,所提出的系统通过以分析方式纳入人类感知的主观性,使用一种新颖的基于模糊索引的相关反馈机制。
进行了广泛的实验,以评估所提出的CBMIR系统在医学应用图像检索(IRMA)-2009数据库的一个子集上的有效性,该子集由57种不同模态的10,902张带标签的放射图像组成。在相关反馈机制仅进行2 - 3次迭代后,我们获得了约98%的总体平均精度。我们通过与一些用于放射图像的先进CBMIR系统进行比较来评估结果。
与大多数现有的CBMIR系统不同,在所提出的两阶段分层框架中,主要重点在于构建高效且紧凑的特征向量表示、减少搜索空间以及有效处理“语义鸿沟”问题,同时不影响检索性能。实验结果和比较表明,所提出的系统在放射医学图像检索领域表现高效。