School of Computer Science and Engineering, North Minzu University, Yinchuan, China.
Medical Imaging Center, Ningxia Hui Autonomous Region People's Hospital, Yinchuan, China.
J Xray Sci Technol. 2024;32(5):1297-1313. doi: 10.3233/XST-240069.
Content-based medical image retrieval (CBMIR) has become an important part of computer-aided diagnostics (CAD) systems. The complex medical semantic information inherent in medical images is the most difficult part to improve the accuracy of image retrieval. Highly expressive feature vectors play a crucial role in the search process. In this paper, we propose an effective deep convolutional neural network (CNN) model to extract concise feature vectors for multiple semantic X-ray medical image retrieval.
We build a feature pyramid based CNN model with ResNet50V2 backbone to extract multi-level semantic information. And we use the well-known public multiple semantic annotated X-ray medical image data set IRMA to train and test the proposed model.
Our method achieves an IRMA error of 32.2, which is the best score compared to the existing literature on this dataset.
The proposed CNN model can effectively extract multi-level semantic information from X-ray medical images. The concise feature vectors can improve the retrieval accuracy of multi-semantic and unevenly distributed X-ray medical images.
基于内容的医学图像检索(CBMIR)已经成为计算机辅助诊断(CAD)系统的重要组成部分。医学图像中固有的复杂医学语义信息是提高图像检索准确性的最困难部分。表现力强的特征向量在搜索过程中起着至关重要的作用。在本文中,我们提出了一种有效的深度卷积神经网络(CNN)模型,用于提取多语义 X 射线医学图像检索的简洁特征向量。
我们构建了一个基于 ResNet50V2 骨干的特征金字塔 CNN 模型,以提取多层次语义信息。并使用著名的公共多语义标注 X 射线医学图像数据集 IRMA 对所提出的模型进行训练和测试。
我们的方法在 IRMA 上的错误率为 32.2,与该数据集上现有的文献相比,这是最好的成绩。
所提出的 CNN 模型可以有效地从 X 射线医学图像中提取多层次语义信息。简洁的特征向量可以提高多语义和不均匀分布的 X 射线医学图像的检索准确性。