Cleerly, Inc., Denver, CO, USA.
Severance Cardiovascular Hospital and Yonsei University College of Medicine, Yonsei University Health System, Seoul, South Korea.
J Cardiovasc Comput Tomogr. 2022 Sep-Oct;16(5):415-422. doi: 10.1016/j.jcct.2022.03.001. Epub 2022 Mar 28.
Atherosclerotic plaque characterization by coronary computed tomography angiography (CCTA) enables quantification of coronary artery disease (CAD) burden and type, which has been demonstrated as the strongest discriminant of future risk of major adverse cardiac events (MACE). To date, there are no clinically useful thresholds to assist with understanding a patient's disease burden and guide diagnosis and management, as there exists with coronary artery calcium (CAC) scoring. The purpose of this manuscript is to establish clinically relevant plaque stages and thresholds based on evidence from invasive angiographic stenosis (ICA) and fractional flow reserve (FFR) data.
303 patients underwent CCTA prior to ICA and FFR for an AHA/ACC clinical indication. Quantitative computed tomography (QCT) was performed for total plaque volume (TPV, mm) and percent atheroma volume (PAV, %). We segmented atherosclerosis by composition for low-density non-calcified plaque (LD-NCP), non-calcified plaque (NCP), and calcified plaque (CP). ICAs were evaluated by quantitative coronary angiography (QCA) for all coronary segments for % diameter stenosis. The relationship of atherosclerotic plaque burden and composition by QCT to ICA stenosis extent and severity by QCA and presence of ischemia by FFR was assessed to develop 4 distinct disease stages.
The mean age of the patients was 64.4 ± 10.2 years; 71% male. At the 50% QCA stenosis threshold, QCT revealed a mean PAV of 9.7 (±8.2)% and TPV of 436 (±444.9)mm for those with non-obstructive CAD; PAV of 11.7 (±8.0)% and TPV of 549.3 (±408.3) mm for 1 vessel disease (1VD), PAV of 17.8 (±9.8)% and TPV of 838.9 (±550.7) mm for 2VD, and PAV of 19.2 (±8.2)% and TPV of 799.9 (±357.4) mm for 3VD/left main disease (LMD). Non-ischemic patients (FFR >0.8) had a mean PAV of 9.2 (±7.3) % and TPV of 422.9 (±387.9 mm) while patients with at least one vessel ischemia (FFR ≤0.8) had a PAV of 15.2 (±9.5)% and TPV of 694.6 (±485.1). Definition of plaque stage thresholds of 0, 250, 750 mm and 0, 5, and 15% PAV resulted in 4 clinically distinct stages in which patients with no, nonobstructive, single VD and multi-vessel disease were optimally distributed.
Atherosclerotic plaque burden by QCT is related to stenosis severity and extent as well as ischemia. We propose staging of CAD atherosclerotic plaque burden using the following definitions: Stage 0 (Normal, 0% PAV, 0 mm TPV), Stage 1 (Mild, >0-5% PAV or >0-250 mm TPV), Stage 2 (Moderate, >5-15% PAV or >250-750 mm TPV) and Stage 3 (Severe, >15% PAV or >750 mm3 TPV).
通过冠状动脉计算机断层血管造影术(CCTA)对动脉粥样硬化斑块进行特征描述,能够对冠状动脉疾病(CAD)负担和类型进行量化,这已被证明是预测主要不良心脏事件(MACE)未来风险的最强判别因素。迄今为止,由于缺乏与冠状动脉钙(CAC)评分相类似的临床有用的阈值,因此无法帮助理解患者的疾病负担并指导诊断和管理。本研究旨在根据血管内造影狭窄(ICA)和血流储备分数(FFR)数据的证据,建立具有临床意义的斑块分期和阈值。
303 名患者因美国心脏协会/美国心脏病学会(AHA/ACC)临床指征而行 CCTA 检查,随后进行 ICA 和 FFR。使用定量计算机断层扫描(QCT)对总斑块体积(TPV,mm)和斑块体积百分比(PAV,%)进行评估。我们根据斑块组成对动脉粥样硬化进行分段,包括低密非钙化斑块(LD-NCP)、非钙化斑块(NCP)和钙化斑块(CP)。所有冠状动脉节段均通过定量冠状动脉造影(QCA)进行评估,以获得狭窄程度的%直径狭窄。采用 QCT 评估斑块负担和组成与 QCA 评估 ICA 狭窄程度和严重程度以及 FFR 评估缺血的相关性,以确定 4 个不同的疾病阶段。
患者的平均年龄为 64.4 ± 10.2 岁,男性占 71%。在 50% QCA 狭窄阈值下,对于非阻塞性 CAD,QCT 显示平均 PAV 为 9.7(±8.2)%,TPV 为 436(±444.9)mm;1 支血管病变(1VD)患者的 PAV 为 11.7(±8.0)%,TPV 为 549.3(±408.3)mm;2 支血管病变(2VD)患者的 PAV 为 17.8(±9.8)%,TPV 为 838.9(±550.7)mm;3 支血管/左主干病变(LMD)患者的 PAV 为 19.2(±8.2)%,TPV 为 799.9(±357.4)mm。非缺血患者(FFR >0.8)的平均 PAV 为 9.2(±7.3)%,TPV 为 422.9(±387.9 mm),而至少有一支血管缺血的患者(FFR ≤0.8)的 PAV 为 15.2(±9.5)%,TPV 为 694.6(±485.1)mm。将斑块阶段的阈值定义为 0、250、750 mm 和 0、5、15% PAV,可将无斑块、非阻塞性、单支血管病变和多支血管病变患者分为 4 个具有临床意义的阶段。
通过 QCT 评估的动脉粥样硬化斑块负担与狭窄严重程度和程度以及缺血有关。我们建议使用以下定义对 CAD 动脉粥样硬化斑块负担进行分期:阶段 0(正常,0% PAV,0 mm TPV)、阶段 1(轻度,>0-5% PAV 或>0-250 mm TPV)、阶段 2(中度,>5-15% PAV 或>250-750 mm TPV)和阶段 3(重度,>15% PAV 或>750 mm3 TPV)。