Suppr超能文献

冠状动脉 CTA 狭窄的人工智能评估,与定量冠状动脉造影和血流储备分数的比较:一项 CREDENCE 试验的子研究。

AI Evaluation of Stenosis on Coronary CTA, Comparison With Quantitative Coronary Angiography and Fractional Flow Reserve: A CREDENCE Trial Substudy.

机构信息

Department of Radiology and Division of Cardiology, George Washington University School of Medicine, Washington, DC, USA.

Department of Radiology and Division of Cardiology, George Washington University School of Medicine, Washington, DC, USA. Electronic address: https://twitter.com/AChoiHeart.

出版信息

JACC Cardiovasc Imaging. 2023 Feb;16(2):193-205. doi: 10.1016/j.jcmg.2021.10.020. Epub 2022 Feb 16.

Abstract

BACKGROUND

Clinical reads of coronary computed tomography angiography (CTA), especially by less experienced readers, may result in overestimation of coronary artery disease stenosis severity compared with expert interpretation. Artificial intelligence (AI)-based solutions applied to coronary CTA may overcome these limitations.

OBJECTIVES

This study compared the performance for detection and grading of coronary stenoses using artificial intelligence-enabled quantitative coronary computed tomography (AI-QCT) angiography analyses to core lab-interpreted coronary CTA, core lab quantitative coronary angiography (QCA), and invasive fractional flow reserve (FFR).

METHODS

Coronary CTA, FFR, and QCA data from 303 stable patients (64 ± 10 years of age, 71% male) from the CREDENCE (Computed TomogRaphic Evaluation of Atherosclerotic DEtermiNants of Myocardial IsChEmia) trial were retrospectively analyzed using an Food and Drug Administration-cleared cloud-based software that performs AI-enabled coronary segmentation, lumen and vessel wall determination, plaque quantification and characterization, and stenosis determination.

RESULTS

Disease prevalence was high, with 32.0%, 35.0%, 21.0%, and 13.0% demonstrating ≥50% stenosis in 0, 1, 2, and 3 coronary vessel territories, respectively. Average AI-QCT analysis time was 10.3 ± 2.7 minutes. AI-QCT evaluation demonstrated per-patient sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of 94%, 68%, 81%, 90%, and 84%, respectively, for ≥50% stenosis, and of 94%, 82%, 69%, 97%, and 86%, respectively, for detection of ≥70% stenosis. There was high correlation between stenosis detected on AI-QCT evaluation vs QCA on a per-vessel and per-patient basis (intraclass correlation coefficient = 0.73 and 0.73, respectively; P < 0.001 for both). False positive AI-QCT findings were noted in in 62 of 848 (7.3%) vessels (stenosis of ≥70% by AI-QCT and QCA of <70%); however, 41 (66.1%) of these had an FFR of <0.8.

CONCLUSIONS

A novel AI-based evaluation of coronary CTA enables rapid and accurate identification and exclusion of high-grade stenosis and with close agreement to blinded, core lab-interpreted quantitative coronary angiography. (Computed TomogRaphic Evaluation of Atherosclerotic DEtermiNants of Myocardial IsChEmia [CREDENCE]; NCT02173275).

摘要

背景

与专家解读相比,临床读取冠状动脉计算机断层扫描血管造影(CTA),尤其是经验较少的读者,可能会导致冠状动脉疾病狭窄严重程度的高估。应用于冠状动脉 CTA 的人工智能(AI)解决方案可能会克服这些局限性。

目的

本研究比较了基于人工智能的定量冠状动脉计算机断层扫描(AI-QCT)血管造影分析与核心实验室解读的冠状动脉 CTA、核心实验室定量冠状动脉造影(QCA)和有创性血流储备分数(FFR)检测和分级冠状动脉狭窄的性能。

方法

回顾性分析了来自 CREDENCE(计算机断层扫描评估动脉粥样硬化性心肌缺血决定因素)试验的 303 例稳定型患者(64±10 岁,71%为男性)的冠状动脉 CTA、FFR 和 QCA 数据,使用经美国食品和药物管理局批准的云基础软件进行分析,该软件可执行 AI 辅助的冠状动脉分段、管腔和血管壁确定、斑块定量和特征分析以及狭窄程度确定。

结果

疾病患病率较高,分别有 32.0%、35.0%、21.0%和 13.0%的患者在 0、1、2 和 3 个冠状动脉区域存在≥50%的狭窄。平均 AI-QCT 分析时间为 10.3±2.7 分钟。AI-QCT 评估显示,对于≥50%的狭窄,每位患者的敏感性、特异性、阳性预测值、阴性预测值和准确性分别为 94%、68%、81%、90%和 84%,对于检测≥70%的狭窄,分别为 94%、82%、69%、97%和 86%。基于血管和患者的基础,AI-QCT 评估检测到的狭窄与 QCA 检测到的狭窄具有高度相关性(组内相关系数分别为 0.73 和 0.73;均<0.001)。在 848 个血管中的 62 个(7.3%)中发现了 AI-QCT 的假阳性发现(AI-QCT 检测到的狭窄≥70%,而 QCA 检测到的狭窄<70%);然而,其中 41 个(66.1%)的 FFR<0.8。

结论

一种新的基于人工智能的冠状动脉 CTA 评估方法能够快速准确地识别和排除高级别狭窄,并与盲法、核心实验室解读的定量冠状动脉造影具有密切的一致性。(计算机断层扫描评估动脉粥样硬化性心肌缺血决定因素[CREDENCE];NCT02173275)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验