Suppr超能文献

通过基于自动算法的图像处理促进对 spp. 的芽孢检测。

Facilitated endospore detection for spp. through automated algorithm-based image processing.

作者信息

Biermann Riekje, Niemeyer Laura, Rösner Laura, Ude Christian, Lindner Patrick, Bice Ismet, Beutel Sascha

机构信息

Institute of Technical Chemistry Leibniz University Hannover Hannover Germany.

Institute of Technical Chemistry Biochem Zusatzstoffe Handels- und Produktionsgesellschaft mbH Lohne Germany.

出版信息

Eng Life Sci. 2021 Dec 10;22(3-4):299-307. doi: 10.1002/elsc.202100137. eCollection 2022 Mar.

Abstract

spp. endospores are important dormant cell forms and are distributed widely in environmental samples. While these endospores can have important industrial value (e.g. use in animal feed as probiotics), they can also be pathogenic for humans and animals, emphasizing the need for effective endospore detection. Standard spore detection by colony forming units (CFU) is time-consuming, elaborate and prone to error. Manual spore detection by spore count in cell counting chambers via phase-contrast microscopy is less time-consuming. However, it requires a trained person to conduct. Thus, the development of a facilitated spore detection tool is necessary. This work presents two alternative quantification methods: first, a colorimetric assay for detecting the biomarker dipicolinic acid (DPA) adapted to modern needs and applied for spp. and second, a model-based automated spore detection algorithm for spore count in phase-contrast microscopic pictures. This automated spore count tool advances manual spore detection in cell counting chambers, and does not require human overview after sample preparation. In conclusion, this developed model detected various  spp. endospores with a correctness of 85-89%, and allows an automation and time-saving of endospore detection. In the laboratory routine, endospore detection and counting was achieved within 5-10 min, compared to up to 48 h with conventional methods. The DPA-assay on the other hand enabled very accurate spore detection by simple colorimetric measurement and can thus be applied as a reference method.

摘要

芽孢杆菌属的芽孢是重要的休眠细胞形式,广泛分布于环境样本中。虽然这些芽孢具有重要的工业价值(例如用作动物饲料中的益生菌),但它们也可能对人类和动物致病,这凸显了有效检测芽孢的必要性。通过菌落形成单位(CFU)进行标准芽孢检测既耗时又复杂,而且容易出错。通过相差显微镜在细胞计数室中进行芽孢计数的手动芽孢检测耗时较短。然而,这需要训练有素的人员来操作。因此,开发一种便捷的芽孢检测工具是必要的。这项工作提出了两种替代的定量方法:第一,一种适用于现代需求的用于检测生物标志物吡啶二羧酸(DPA)的比色测定法,并应用于芽孢杆菌属;第二,一种基于模型的自动芽孢检测算法,用于相差显微镜图像中的芽孢计数。这种自动芽孢计数工具改进了在细胞计数室中的手动芽孢检测,并且在样品制备后不需要人工查看。总之,这种开发的模型检测各种芽孢杆菌属芽孢的准确率为85%-89%,并实现了芽孢检测的自动化和节省时间。在实验室常规操作中,芽孢检测和计数在5-10分钟内即可完成,而传统方法则需要长达48小时。另一方面,DPA测定法通过简单的比色测量就能实现非常准确的芽孢检测,因此可作为参考方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec91/8961035/7cdbc7551b32/ELSC-22-299-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验