Suppr超能文献

基于矩阵导数观测器的ZNN类人上身机器人设计与轨迹跟踪控制

Design of a Humanoid Upper-Body Robot and Trajectory Tracking Control via ZNN with a Matrix Derivative Observer.

作者信息

Yin Hong, Jin Hongzhe, Peng Yuchen, Wang Zijian, Liu Jiaxiu, Ju Fengjia, Zhao Jie

机构信息

School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150080, China.

出版信息

Biomimetics (Basel). 2025 Aug 2;10(8):505. doi: 10.3390/biomimetics10080505.

Abstract

Humanoid robots have attracted considerable attention for their anthropomorphic structure, extended workspace, and versatile capabilities. This paper presents a novel humanoid upper-body robotic system comprising a pair of 8-degree-of-freedom (DOF) arms, a 3-DOF head, and a 3-DOF torso-yielding a 22-DOF architecture inspired by human biomechanics and implemented via standardized hollow joint modules. To overcome the critical reliance of zeroing neural network (ZNN)-based trajectory tracking on the Jacobian matrix derivative, we propose an integration-enhanced matrix derivative observer (IEMDO) that incorporates nonlinear feedback and integral correction. The observer is theoretically proven to ensure asymptotic convergence and enables accurate, real-time estimation of matrix derivatives, addressing a fundamental limitation in conventional ZNN solvers. Workspace analysis reveals that the proposed design achieves an 87.7% larger total workspace and a remarkable 3.683-fold expansion in common workspace compared to conventional dual-arm baselines. Furthermore, the observer demonstrates high estimation accuracy for high-dimensional matrices and strong robustness to noise. When integrated into the ZNN controller, the IEMDO achieves high-precision trajectory tracking in both simulation and real-world experiments. The proposed framework provides a practical and theoretically grounded approach for redundant humanoid arm control.

摘要

人形机器人因其拟人化结构、扩展的工作空间和多功能能力而备受关注。本文提出了一种新型人形上半身机器人系统,该系统包括一对8自由度(DOF)手臂、一个3自由度头部和一个3自由度躯干,产生了一种受人体生物力学启发并通过标准化空心关节模块实现的22自由度架构。为了克服基于归零神经网络(ZNN)的轨迹跟踪对雅可比矩阵导数的严重依赖,我们提出了一种集成增强矩阵导数观测器(IEMDO),它结合了非线性反馈和积分校正。理论上证明该观测器可确保渐近收敛,并能够准确、实时地估计矩阵导数,解决了传统ZNN求解器的一个基本限制。工作空间分析表明,与传统双臂基线相比,所提出的设计实现了87.7%更大的总工作空间和3.683倍显著扩展的公共工作空间。此外,该观测器对高维矩阵具有较高的估计精度,并且对噪声具有较强的鲁棒性。当集成到ZNN控制器中时,IEMDO在仿真和实际实验中均实现了高精度轨迹跟踪。所提出的框架为冗余人形手臂控制提供了一种实用且有理论依据的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/93d0/12383508/2aee7eb0b663/biomimetics-10-00505-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验