Suppr超能文献

基于金属有机框架的纳米通道中质子和金属离子的超快整流反向传输。

Ultrafast rectifying counter-directional transport of proton and metal ions in metal-organic framework-based nanochannels.

作者信息

Lu Jun, Xu Hengyu, Yu Hao, Hu Xiaoyi, Xia Jun, Zhu Yinlong, Wang Fengchao, Wu Heng-An, Jiang Lei, Wang Huanting

机构信息

Department of Chemical and Biological Engineering, Monash Center for Membrane Innovation, Monash University, Clayton, Victoria 3800, Australia.

CAS Key Laboratory of Mechanical Behavior and Design of Materials; Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, China.

出版信息

Sci Adv. 2022 Apr 8;8(14):eabl5070. doi: 10.1126/sciadv.abl5070. Epub 2022 Apr 6.

Abstract

Bioinspired control of ion transport at the subnanoscale has become a major focus in the fields of nanofluidics and membrane separation. It is fundamentally important to achieve rectifying ion-specific transport in artificial ion channels, but it remains a challenge. Here, we report a previously unidentified metal-organic framework nanochannel (MOF NC) nanofluidic system to achieve unidirectional ultrafast counter-directional transport of alkaline metal ions and proton. This highly effective ion-specific rectifying transport behavior is attributed to two distinct mechanisms for metal ions and proton, elucidated by theoretical simulations. Notably, the MOF NC exhibits ultrafast proton conduction stemming from ultrahigh proton mobility, i.e., 11.3 × 10 m /V·s, and low energy barrier of 0.075 eV in MIL-53-COOH subnanochannels. Furthermore, the MOF NC shows excellent osmotic power-harvesting performance in reverse electrodialysis. This work expects to inspire further research into multifunctional biomimetic ion channels for advanced nanofluidics, biomimetics, and separation applications.

摘要

亚纳米尺度下受生物启发的离子传输控制已成为纳米流体学和膜分离领域的一个主要研究重点。在人工离子通道中实现离子特异性整流传输至关重要,但仍然是一个挑战。在此,我们报道了一种此前未被识别的金属有机框架纳米通道(MOF NC)纳米流体系统,以实现碱金属离子和质子的单向超快反向传输。这种高效的离子特异性整流传输行为归因于金属离子和质子的两种不同机制,这是通过理论模拟阐明的。值得注意的是,MOF NC由于超高的质子迁移率,即11.3×10 m /V·s,以及MIL-53-COOH亚纳米通道中0.075 eV的低能垒,表现出超快的质子传导。此外,MOF NC在反向电渗析中表现出优异的渗透压收集性能。这项工作有望激发对用于先进纳米流体学、仿生学和分离应用的多功能仿生离子通道的进一步研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a067/8985916/ded457cdf5b0/sciadv.abl5070-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验