Suppr超能文献

使用多变量MetaCCA分析鉴定免疫和骨骼疾病的潜在多效性基因

Identification of Potential Pleiotropic Genes for Immune and Skeletal Diseases Using Multivariate MetaCCA Analysis.

作者信息

He Pei, Cao Rong-Rong, Deng Fei-Yan, Lei Shu-Feng

机构信息

Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China.

Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China.

出版信息

Curr Genomics. 2021 Dec 31;22(8):596-606. doi: 10.2174/1389202923666211223115214.

Abstract

BACKGROUND

Immune and skeletal systems physiologically and pathologically interact with each other. Immune and skeletal diseases may share potential pleiotropic genetics factors, but the shared specific genes are largely unknown.

OBJECTIVE

This study aimed to investigate the overlapping genetic factors between multiple diseases (including rheumatoid arthritis (RA), psoriasis, osteoporosis, osteoarthritis, sarcopenia, and fracture).

METHODS

The canonical correlation analysis (metaCCA) approach was used to identify the shared genes for six diseases by integrating genome-wide association study (GWAS)-derived summary statistics. The versatile Gene-based Association Study (VEGAS2) method was further applied to refine and validate the putative pleiotropic genes identified by metaCCA.

RESULTS

About 157 (p<8.19E-6), 319 (p<3.90E-6), and 77 (p<9.72E-6) potential pleiotropic genes were identified shared by two immune diseases, four skeletal diseases, and all of the six diseases, respectively. The top three significant putative pleiotropic genes shared by both immune and skeletal diseases, including , and (p<E-300), were located in the major histocompatibility complex (MHC) region. Nineteen of 77 putative pleiotropic genes identified by metaCCA analysis were associated with at least one disease in the VEGAS2 analysis. Specifically, the majority (18) of these 19 putative validated pleiotropic genes were associated with RA.

CONCLUSION

The metaCCA method identified some pleiotropic genes shared by the immune and skeletal diseases. These findings help to improve our understanding of the shared genetic mechanisms and signaling pathways underlying immune and skeletal diseases.

摘要

背景

免疫系统与骨骼系统在生理和病理层面相互作用。免疫性疾病和骨骼疾病可能共享潜在的多效性遗传因素,但具体共享的基因大多未知。

目的

本研究旨在探究多种疾病(包括类风湿关节炎(RA)、银屑病、骨质疏松症、骨关节炎、肌肉减少症和骨折)之间重叠的遗传因素。

方法

采用典型相关分析(metaCCA)方法,通过整合全基因组关联研究(GWAS)得出的汇总统计数据,来识别六种疾病共享的基因。进一步应用通用基因关联研究(VEGAS2)方法,对metaCCA识别出的假定多效性基因进行优化和验证。

结果

分别识别出约157个(p<8.19E-6)、319个(p<3.90E-6)和77个(p<9.72E-6)潜在多效性基因,它们分别由两种免疫疾病、四种骨骼疾病以及所有六种疾病共享。免疫和骨骼疾病共享的前三个显著假定多效性基因,包括 、 和 (p<E-300),位于主要组织相容性复合体(MHC)区域。metaCCA分析识别出的77个假定多效性基因中,有19个在VEGAS2分析中与至少一种疾病相关。具体而言,这19个经验证的假定多效性基因中的大多数(18个)与RA相关。

结论

metaCCA方法识别出一些免疫和骨骼疾病共享的多效性基因。这些发现有助于增进我们对免疫和骨骼疾病潜在共享遗传机制及信号通路的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/190a/8922324/b0a764b41587/CG-22-596_F1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验