Suppr超能文献

肌球蛋白介导的模拟肌动蛋白重排。

Simulated actin reorganization mediated by motor proteins.

机构信息

Department of Mathematics and Biology, Duke University, Durham, North Carolina, United States of America.

Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California, United States of America.

出版信息

PLoS Comput Biol. 2022 Apr 7;18(4):e1010026. doi: 10.1371/journal.pcbi.1010026. eCollection 2022 Apr.

Abstract

Cortical actin networks are highly dynamic and play critical roles in shaping the mechanical properties of cells. The actin cytoskeleton undergoes significant reorganization in many different contexts, including during directed cell migration and over the course of the cell cycle, when cortical actin can transition between different configurations such as open patched meshworks, homogeneous distributions, and aligned bundles. Several types of myosin motor proteins, characterized by different kinetic parameters, have been involved in this reorganization of actin filaments. Given the limitations in studying the interactions of actin with myosin in vivo, we propose stochastic agent-based models and develop a set of data analysis measures to assess how myosin motor proteins mediate various actin organizations. In particular, we identify individual motor parameters, such as motor binding rate and step size, that generate actin networks with different levels of contractility and different patterns of myosin motor localization, which have previously been observed experimentally. In simulations where two motor populations with distinct kinetic parameters interact with the same actin network, we find that motors may act in a complementary way, by tuning the actin network organization, or in an antagonistic way, where one motor emerges as dominant. This modeling and data analysis framework also uncovers parameter regimes where spatial segregation between motor populations is achieved. By allowing for changes in kinetic rates during the actin-myosin dynamic simulations, our work suggests that certain actin-myosin organizations may require additional regulation beyond mediation by motor proteins in order to reconfigure the cytoskeleton network on experimentally-observed timescales.

摘要

皮层肌动蛋白网络高度动态,在塑造细胞的机械特性方面发挥着关键作用。肌动蛋白细胞骨架在许多不同的情况下都会发生显著的重组,包括在定向细胞迁移过程中和细胞周期过程中,此时皮层肌动蛋白可以在不同的构象之间转换,如开放的斑块网格、均匀分布和对齐的束。几种肌球蛋白马达蛋白,其特征在于不同的动力学参数,已经参与了肌动蛋白丝的这种重排。鉴于在体内研究肌动蛋白与肌球蛋白相互作用的局限性,我们提出了随机基于代理的模型,并开发了一组数据分析措施来评估肌球蛋白马达蛋白如何介导各种肌动蛋白组织。特别是,我们确定了单个马达参数,例如马达结合率和步长,这些参数可以生成具有不同收缩水平和不同肌球蛋白马达定位模式的肌动蛋白网络,这些模式以前在实验中观察到过。在两个具有不同动力学参数的马达群体与相同的肌动蛋白网络相互作用的模拟中,我们发现马达可以通过调节肌动蛋白网络组织以互补的方式或通过一个马达成为主导以拮抗的方式发挥作用。这种建模和数据分析框架还揭示了马达群体之间实现空间隔离的参数范围。通过允许在肌动蛋白-肌球蛋白动态模拟过程中改变动力学速率,我们的工作表明,某些肌动蛋白-肌球蛋白组织可能需要除了马达蛋白介导之外的额外调节,以便在实验观察到的时间尺度上重新配置细胞骨架网络。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f870/9017880/70f32bcf6358/pcbi.1010026.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验