Suppr超能文献

采用整合生物信息学方法,鉴定靶向 SARS-CoV-1 感染的宿主转录组可再利用药物,并通过 SARS-CoV-2 感染进行验证。

Identification of host transcriptome-guided repurposable drugs for SARS-CoV-1 infections and their validation with SARS-CoV-2 infections by using the integrated bioinformatics approaches.

机构信息

Department of Mathematics, Jashore University of Science and Technology, Jashore, Bangladesh.

Bioinformatics Lab., Department of Statistics, Rajshahi University, Rajshahi, Bangladesh.

出版信息

PLoS One. 2022 Apr 7;17(4):e0266124. doi: 10.1371/journal.pone.0266124. eCollection 2022.

Abstract

Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is one of the most severe global pandemic due to its high pathogenicity and death rate starting from the end of 2019. Though there are some vaccines available against SAER-CoV-2 infections, we are worried about their effectiveness, due to its unstable sequence patterns. Therefore, beside vaccines, globally effective supporting drugs are also required for the treatment against SARS-CoV-2 infection. To explore commonly effective repurposable drugs for the treatment against different variants of coronavirus infections, in this article, an attempt was made to explore host genomic biomarkers guided repurposable drugs for SARS-CoV-1 infections and their validation with SARS-CoV-2 infections by using the integrated bioinformatics approaches. At first, we identified 138 differentially expressed genes (DEGs) between SARS-CoV-1 infected and control samples by analyzing high throughput gene-expression profiles to select drug target key receptors. Then we identified top-ranked 11 key DEGs (SMAD4, GSK3B, SIRT1, ATM, RIPK1, PRKACB, MED17, CCT2, BIRC3, ETS1 and TXN) as hub genes (HubGs) by protein-protein interaction (PPI) network analysis of DEGs highlighting their functions, pathways, regulators and linkage with other disease risks that may influence SARS-CoV-1 infections. The DEGs-set enrichment analysis significantly detected some crucial biological processes (immune response, regulation of angiogenesis, apoptotic process, cytokine production and programmed cell death, response to hypoxia and oxidative stress), molecular functions (transcription factor binding and oxidoreductase activity) and pathways (transcriptional mis-regulation in cancer, pathways in cancer, chemokine signaling pathway) that are associated with SARS-CoV-1 infections as well as SARS-CoV-2 infections by involving HubGs. The gene regulatory network (GRN) analysis detected some transcription factors (FOXC1, GATA2, YY1, FOXL1, TP53 and SRF) and micro-RNAs (hsa-mir-92a-3p, hsa-mir-155-5p, hsa-mir-106b-5p, hsa-mir-34a-5p and hsa-mir-19b-3p) as the key transcriptional and post- transcriptional regulators of HubGs, respectively. We also detected some chemicals (Valproic Acid, Cyclosporine, Copper Sulfate and arsenic trioxide) that may regulates HubGs. The disease-HubGs interaction analysis showed that our predicted HubGs are also associated with several other diseases including different types of lung diseases. Then we considered 11 HubGs mediated proteins and their regulatory 6 key TFs proteins as the drug target proteins (receptors) and performed their docking analysis with the SARS-CoV-2 3CL protease-guided top listed 90 anti-viral drugs out of 3410. We found Rapamycin, Tacrolimus, Torin-2, Radotinib, Danoprevir, Ivermectin and Daclatasvir as the top-ranked 7 candidate-drugs with respect to our proposed target proteins for the treatment against SARS-CoV-1 infections. Then, we validated these 7 candidate-drugs against the already published top-ranked 11 target proteins associated with SARS-CoV-2 infections by molecular docking simulation and found their significant binding affinity scores with our proposed candidate-drugs. Finally, we validated all of our findings by the literature review. Therefore, the proposed candidate-drugs might play a vital role for the treatment against different variants of SARS-CoV-2 infections with comorbidities, since the proposed HubGs are also associated with several comorbidities.

摘要

严重急性呼吸系统综合症冠状病毒 2 型(SARS-CoV-2)是由于其高致病性和死亡率而自 2019 年底以来成为最严重的全球大流行之一。虽然有一些针对 SARS-CoV-2 感染的疫苗,但由于其不稳定的序列模式,我们担心它们的有效性。因此,除了疫苗外,还需要在全球范围内使用有效的支持性药物来治疗 SARS-CoV-2 感染。为了探索针对不同冠状病毒变异株感染的常用可再利用药物,本文尝试通过整合生物信息学方法,探索针对 SARS-CoV-1 感染的基于宿主基因组生物标志物的可再利用药物,并对 SARS-CoV-2 感染进行验证。首先,我们通过分析高通量基因表达谱,鉴定出 SARS-CoV-1 感染和对照样本之间的 138 个差异表达基因(DEGs),以选择药物靶标关键受体。然后,我们通过 DEGs 的蛋白质-蛋白质相互作用(PPI)网络分析,确定了排名前 11 的关键 DEGs(SMAD4、GSK3B、SIRT1、ATM、RIPK1、PRKACB、MED17、CCT2、BIRC3、ETS1 和 TXN)作为枢纽基因(HubGs),突出了它们的功能、途径、调节剂以及与其他疾病风险的联系,这些风险可能会影响 SARS-CoV-1 感染。DEGs 集富集分析显著检测到一些关键的生物学过程(免疫反应、血管生成调节、凋亡过程、细胞因子产生和程序性细胞死亡、对缺氧和氧化应激的反应)、分子功能(转录因子结合和氧化还原酶活性)和途径(癌症中的转录失调、癌症途径、趋化因子信号通路),这些过程和途径与 SARS-CoV-1 感染以及 SARS-CoV-2 感染有关,涉及 HubGs。基因调控网络(GRN)分析检测到一些转录因子(FOXC1、GATA2、YY1、FOXL1、TP53 和 SRF)和 micro-RNAs(hsa-mir-92a-3p、hsa-mir-155-5p、hsa-mir-106b-5p、hsa-mir-34a-5p 和 hsa-mir-19b-3p)分别作为 HubGs 的关键转录和后转录调节剂。我们还检测到一些可能调节 HubGs 的化学物质(丙戊酸、环孢菌素、硫酸铜和三氧化二砷)。疾病-HubGs 相互作用分析表明,我们预测的 HubGs 还与其他几种疾病有关,包括不同类型的肺部疾病。然后,我们考虑了 11 个 HubGs 介导的蛋白质及其 6 个关键 TF 蛋白质作为药物靶标蛋白质(受体),并对它们与 SARS-CoV-2 3CL 蛋白酶指导的前 90 种抗病毒药物中的 3410 种进行了对接分析。我们发现雷帕霉素、他克莫司、托罗尼布、拉多替尼、丹诺昔布、伊维菌素和达拉他韦是治疗 SARS-CoV-1 感染的前 7 个候选药物,这些药物与我们提出的治疗 SARS-CoV-1 感染的靶标蛋白有关。然后,我们通过分子对接模拟验证了这 7 种候选药物与已经发表的与 SARS-CoV-2 感染相关的前 11 种靶蛋白之间的关系,发现它们与我们提出的候选药物有显著的结合亲和力评分。最后,我们通过文献综述验证了所有的研究结果。因此,这些候选药物可能在治疗伴有合并症的不同变异株 SARS-CoV-2 感染方面发挥重要作用,因为所提出的 HubGs 也与几种合并症有关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c97/8989220/2291fcb964f4/pone.0266124.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验