Suppr超能文献

基于代谢性疾病多基因风险预测冠心病事件的发生:来自韩国 3 项前瞻性队列研究的分析。

Prediction of incident atherosclerotic cardiovascular disease with polygenic risk of metabolic disease: Analysis of 3 prospective cohort studies in Korea.

机构信息

Genome Opinion Incorporation, Seoul, 04799, South Korea.

Genome Opinion Incorporation, Seoul, 04799, South Korea; Division of Hemato-oncology, Department of Internal Medicine, Seoul National University Hospital, Seoul, 03080, South Korea; Center for Precision Medicine, Seoul National University Hospital, Seoul, 03080, South Korea.

出版信息

Atherosclerosis. 2022 May;348:16-24. doi: 10.1016/j.atherosclerosis.2022.03.021. Epub 2022 Mar 28.

Abstract

BACKGROUND AND AIMS

Studies have demonstrated that the risk of atherosclerotic cardiovascular disease (ASCVD) can be assessed by polygenic risk score (PRS) using common genetic variants. Because metabolic syndrome is a well-known, robust risk factor of ASCVD, we established PRS of metabolic disease and analyzed whether this PRS could predict incident ASCVD.

METHODS

We constructed PRSs for eight quantifiable metabolic phenotypes-systolic/diastolic blood pressure, body mass index (BMI), four blood lipid components, and fasting blood glucose-by genome-wide association studies of two prospective Korean cohorts (n = 37,285). We conducted a grid search of combinations of metabolic PRSs to identify the most optimal weighted score for incident ASCVD (PRS-ASCVD). The utility of PRS-ASCVD was validated in an independent prospective cohort (n = 4333).

RESULTS

The individuals in the highest PRS quintile demonstrated a 1.4-2.0-fold increased risk of incident hypertension, obesity, hyperlipidemia, and diabetes. Using the PRS-ASCVD, we identified 6.7% of the population as a high risk group demonstrating a 3.3-fold (95% confidence interval 1.7-6.1, p < 0.001) higher risk for incident ASCVD. The model combining the PRS-ASCVD demonstrated a better performance for predicting ASCVD than that consisting of only conventional risk factors, such as age, sex, BMI, smoking, hypertension, diabetes and hyperlipidemia. The population with high PRS-ASCVD minimally overlapped with that of high Framingham risk score, thus suggesting the additive independent benefits beyond the Framingham risk score, especially in younger individuals.

CONCLUSIONS

The polygenic risk of metabolic disease independently predicts those at an increased risk of ASCVD, identifying those at a genetically high risk of incident ASCVD.

摘要

背景与目的

研究表明,使用常见遗传变异的多基因风险评分(PRS)可以评估动脉粥样硬化性心血管疾病(ASCVD)的风险。由于代谢综合征是 ASCVD 的一个众所周知的、强有力的风险因素,我们建立了代谢疾病的 PRS,并分析了该 PRS 是否可以预测 ASCVD 的发生。

方法

我们通过对两个前瞻性韩国队列(n=37285)的全基因组关联研究,构建了 8 种可量化代谢表型(收缩压/舒张压、体重指数(BMI)、4 种血脂成分和空腹血糖)的 PRS。我们对代谢 PRS 的组合进行了网格搜索,以确定用于预测 ASCVD 事件的最佳加权评分(PRS-ASCVD)。PRS-ASCVD 的效用在一个独立的前瞻性队列(n=4333)中得到了验证。

结果

最高 PRS 五分位组的个体发生高血压、肥胖、血脂异常和糖尿病的风险增加 1.4-2.0 倍。使用 PRS-ASCVD,我们确定了 6.7%的高风险人群,该人群发生 ASCVD 的风险增加了 3.3 倍(95%置信区间为 1.7-6.1,p<0.001)。结合 PRS-ASCVD 的模型比仅包含年龄、性别、BMI、吸烟、高血压、糖尿病和血脂异常等传统危险因素的模型具有更好的预测 ASCVD 的性能。具有高 PRS-ASCVD 的人群与具有高 Framingham 风险评分的人群最小程度重叠,这表明除了 Framingham 风险评分之外,还具有独立的附加益处,尤其是在年轻人群中。

结论

代谢疾病的多基因风险独立预测 ASCVD 的风险增加,确定了具有 ASCVD 发生遗传高风险的人群。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验