Pandya Thakkar Niyati, Pereira Beatriz Maria Veloso, Katakia Yash T, Ramakrishnan Shyam Kumar, Thakar Sumukh, Sakhuja Ashima, Rajeev Gayathry, Soorya S, Thieme Karina, Majumder Syamantak
Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, India.
Laboratório de Bases Celulares e Moleculares da Fisiologia Renal, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de Sao Paulo, Sao Paulo, Brazil.
Front Cell Dev Biol. 2022 Mar 22;10:839109. doi: 10.3389/fcell.2022.839109. eCollection 2022.
Endothelial-to-mesenchymal transition (EndMT) is a hallmark of diabetes-associated vascular complications. Epigenetic mechanisms emerged as one of the key pathways to regulate diabetes-associated complications. In the current study, we aimed to determine how abrupt changes in histone 3 lysine 4 tri-methylation (H3K4me3) upon hyperglycemia exposure reprograms endothelial cells to undergo EndMT. Through studies, we first establish that intermittent high-glucose exposure to EC most potently induced partial mesenchyme-like characteristics compared with transient or constant high-glucose-challenged endothelial cells. In addition, glomerular endothelial cells of BTBR Ob/Ob mice also exhibited mesenchymal-like characteristics. Intermittent hyperglycemia-dependent induction of partial mesenchyme-like phenotype of endothelial cells coincided with an increase in H3K4me3 level in both macro- and micro-vascular EC due to selective increase in MLL2 and WDR82 protein of SET1/COMPASS complex. Such an endothelial-specific heightened H3K4me3 level was also detected in intermittent high-glucose-exposed rat aorta and in kidney glomeruli of Ob/Ob mice. Elevated H3K4me3 enriched in the promoter regions of Notch ligands Jagged1 and Jagged2, thus causing abrupt expression of these ligands and concomitant activation of Notch signaling upon intermittent hyperglycemia challenge. Pharmacological inhibition and/or knockdown of MLL2 in cells or in tissues normalized intermittent high-glucose-mediated increase in H3K4me3 level and further reversed Jagged1 and Jagged2 expression, Notch activation and further attenuated acquisition of partial mesenchyme-like phenotype of endothelial cells. In summary, the present study identifies a crucial role of histone methylation in hyperglycemia-dependent reprograming of endothelial cells to undergo mesenchymal transition and indicated that epigenetic pathways contribute to diabetes-associated vascular complications.
内皮-间充质转化(EndMT)是糖尿病相关血管并发症的一个标志。表观遗传机制已成为调节糖尿病相关并发症的关键途径之一。在本研究中,我们旨在确定高血糖暴露后组蛋白3赖氨酸4三甲基化(H3K4me3)的突然变化如何使内皮细胞重编程以经历EndMT。通过研究,我们首先确定,与短暂或持续高糖刺激的内皮细胞相比,间歇性高糖暴露于内皮细胞最有效地诱导了部分间充质样特征。此外,BTBR Ob/Ob小鼠的肾小球内皮细胞也表现出间充质样特征。内皮细胞部分间充质样表型的间歇性高血糖依赖性诱导与大、微血管内皮细胞中H3K4me3水平的增加相一致,这是由于SET1/COMPASS复合物的MLL2和WDR82蛋白选择性增加所致。在间歇性高糖暴露的大鼠主动脉和Ob/Ob小鼠的肾小球中也检测到了这种内皮特异性升高的H3K4me3水平。H3K4me3在Notch配体Jagged1和Jagged2的启动子区域富集,从而导致这些配体的突然表达以及间歇性高血糖刺激后Notch信号的伴随激活。在细胞或组织中对MLL2进行药理学抑制和/或敲低可使间歇性高糖介导的H3K4me3水平增加正常化,并进一步逆转Jagged1和Jagged2的表达、Notch激活,并进一步减弱内皮细胞部分间充质样表型的获得。总之,本研究确定了组蛋白甲基化在高血糖依赖性内皮细胞重编程以经历间充质转化中的关键作用,并表明表观遗传途径促成了糖尿病相关的血管并发症。