Suppr超能文献

一项建立电视辅助胸腔镜肺叶切除术和纵隔淋巴结清扫术前难度预测模型的回顾性和前瞻性研究。

A retrospective and prospective study to establish a preoperative difficulty predicting model for video-assisted thoracoscopic lobectomy and mediastinal lymph node dissection.

作者信息

Wang Zixiao, Wang Yuhang, Sun Daqiang

机构信息

Tianjin Medical University, Heping, Tianjin, 300070, People's Republic of China.

Department of Thoracic Surgery, Tianjin Chest Hospital, Jinnan, Tianjin, 300222, People's Republic of China.

出版信息

BMC Surg. 2022 Apr 8;22(1):135. doi: 10.1186/s12893-022-01566-3.

Abstract

BACKGROUND

In previous studies, the difficulty of surgery has rarely been used as a research object. Our study aimed to develop a predictive model to enable preoperative prediction of the technical difficulty of video-assisted thoracoscopic lobectomy and mediastinal lymph node dissection using retrospective data and to validate our findings prospectively.

METHODS

Collected data according to the designed data table and took the operation time as the outcome variable. A nomogram to predict the difficulty of surgery was established through Lasso logistic regression. The prospective datasets were analyzed and the outcome was the operation time.

RESULTS

This retrospective study enrolled 351 patients and 85 patients were included in the prospective datasets. The variables in the retrospective research were selected by Lasso logistic regression (only used for modeling and not screening), and four significantly related influencing factors were obtained: FEV1/FVC (forced expiratory volume in the first second/forced vital capacity) (p < 0.001, OR, odds ratio = 0.89, 95% CI, confidence interval = 0.84-0.94), FEV1/pred FEV1 (forced expiratory volume in the first second/forced expiratory volume in the first second in predicted) (p = 0.076, OR = 0.98, 95% CI = 0.95-1.00), history of lung disease (p = 0.027, OR = 4.00, 95% CI = 1.27-15.64), and mediastinal lymph node enlargement or calcification (p < 0.001, OR = 9.78, 95% CI = 5.10-19.69). We used ROC (receiver operating characteristic) curves to evaluate the model. The training set AUC (area under curve) value was 0.877, the test set's AUC was 0.789, and the model had a good calibration curve. In a prospective study, the data obtained in the research cohort were brought into the model again for verification, and the AUC value was 0.772.

CONCLUSION

Our retrospective study identified four preoperative variables that are correlated with a longer surgical time and can be presumed to reflect more difficult surgical procedures. Our prospective study verified that the variables in the prediction model (including prior lung disease, FEV1/pred FEV1, FEV1/FVC, mediastinal lymph node enlargement or calcification) were related to the difficulty.

摘要

背景

在以往的研究中,手术难度很少被用作研究对象。我们的研究旨在开发一种预测模型,以便利用回顾性数据对电视辅助胸腔镜肺叶切除术和纵隔淋巴结清扫术的技术难度进行术前预测,并对我们的研究结果进行前瞻性验证。

方法

根据设计的数据表收集数据,并将手术时间作为结果变量。通过套索逻辑回归建立预测手术难度的列线图。对前瞻性数据集进行分析,结果为手术时间。

结果

这项回顾性研究纳入了351例患者,前瞻性数据集纳入了85例患者。回顾性研究中的变量通过套索逻辑回归进行选择(仅用于建模而非筛选),获得了4个显著相关的影响因素:第1秒用力呼气量/用力肺活量(FEV1/FVC)(p < 0.001,比值比[OR]=0.89,95%置信区间[CI]=0.84 - 0.94)、第1秒用力呼气量/预测第1秒用力呼气量(FEV1/pred FEV1)(p = 0.076,OR = 0.98,95% CI = 0.95 - 1.00)、肺部疾病史(p = 0.027,OR = 4.00,95% CI = 1.27 - 15.64)以及纵隔淋巴结肿大或钙化(p < 0.001,OR = 9.78,95% CI = 5.10 - 19.69)。我们使用受试者工作特征(ROC)曲线来评估该模型。训练集曲线下面积(AUC)值为0.877,测试集的AUC为0.789,且该模型具有良好的校准曲线。在前瞻性研究中,将研究队列中获得的数据再次代入模型进行验证,AUC值为0.772。

结论

我们的回顾性研究确定了4个术前变量,这些变量与较长的手术时间相关,并且可以推测它们反映了更困难的手术过程。我们的前瞻性研究验证了预测模型中的变量(包括既往肺部疾病、FEV1/pred FEV1、FEV1/FVC、纵隔淋巴结肿大或钙化)与手术难度相关。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验