Zeng Dewu, Yao Jingming, Zhang Long, Xu Ruonan, Wang Shaojie, Yan Xinlin, Yu Chuang, Wang Lin
Clean Nano Energy Center, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, Hebei, 066004, China.
Center for High Pressure Science (CHiPS), State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, Hebei, 066004, China.
Nat Commun. 2022 Apr 7;13(1):1909. doi: 10.1038/s41467-022-29596-8.
The use of inorganic solid-state electrolytes is considered a viable strategy for developing high-energy Li-based metal batteries. However, suppression of parasitic interfacial reactions and growth of unfavorable Li metal depositions upon cycling are challenging aspects and not yet fully addressed. Here, to better understand these phenomena, we investigate various sulfide inorganic solid electrolytes (SEs), i.e., LiPSCl (x = 0.6, 1.0, 1.3, 1.45, and 1.6), via ex situ and in situ physicochemical and electrochemical measurements. We found that the Cl distribution and the cooling process applied during the SE synthesis strongly influence the evolution of the Li|SE interface in terms of microstructure, interphase composition, and morphology. Indeed, for a SE with a moderate chlorine content (i.e., x = 1.3) and obtained via a slow cooling process after sintering, the Cl atoms are located on the surface of the SE grains as interconnected LiCl nanoparticles that form an extended LiCl-based framework. This peculiar microstructure facilitates the migration of the Cl ions to the Li|SE interface during electrochemical cycling, thus, favouring the formation of a LiCl-rich interphase layer capable of improving the battery cycling performances.
使用无机固态电解质被认为是开发高能锂基金属电池的一种可行策略。然而,抑制寄生界面反应以及在循环过程中抑制不利的锂金属沉积生长是具有挑战性的方面,尚未得到充分解决。在此,为了更好地理解这些现象,我们通过非原位和原位物理化学及电化学测量研究了各种硫化物无机固体电解质(SEs),即LiPSCl(x = 0.6、1.0、1.3、1.45和1.6)。我们发现,SE合成过程中Cl的分布以及所采用的冷却过程在微观结构、界面相组成和形态方面对Li|SE界面的演变有强烈影响。实际上,对于通过烧结后缓慢冷却过程获得的具有适度氯含量(即x = 1.3)的SE,Cl原子位于SE颗粒表面,作为相互连接的LiCl纳米颗粒,形成一个扩展的基于LiCl的框架。这种特殊的微观结构有助于在电化学循环过程中Cl离子迁移到Li|SE界面,从而有利于形成富含LiCl的界面层,能够改善电池的循环性能。