Suppr超能文献

FLASH RT 期间脑脉管中氧耗竭动力学的 3D 计算模型及其对体内血氧测量实验的影响。

3D computational model of oxygen depletion kinetics in brain vasculature during FLASH RT and its implications for in vivo oximetry experiments.

机构信息

Department of Radiation Oncology, Stanford University, Palo Alto, California, USA.

出版信息

Med Phys. 2022 Jun;49(6):3914-3925. doi: 10.1002/mp.15642. Epub 2022 Apr 18.

Abstract

PURPOSE

Ultra-high-dose-rate irradiation, also known as FLASH, has been shown to improve the therapeutic ratio of radiation therapy (RT). The mechanism behind this effect has been partially explained by the radiochemical oxygen depletion (ROD) hypothesis, which attributes the protection of the normal tissue to the induction of transient hypoxia by ROD. To better understand the contribution of oxygen to the FLASH effect, it is necessary to measure oxygen (O ) in vivo during FLASH irradiation. This study's goal is to determine the temporal resolution required to accurately measure the rapidly changing oxygen concentration immediately after FLASH irradiation.

METHODS

We conducted a computational simulation of oxygen dynamics using a real vascular model that was constructed from a public fluorescence microscopy dataset. The dynamic distribution of oxygen tension (p ) during and after FLASH RT was modeled by a partial differential equation (PDE) considering oxygen diffusion, metabolism, and ROD. The underestimation of ROD due to oxygen recovery was evaluated assuming either complete or partial depletion, and a range of possible values for parameters such as oxygen diffusion, consumption, vascular p and vessel density.

RESULT

The O concentration recovers rapidly after FLASH RT. Assuming a temporal resolution of 0.5 s, the estimated ROD is only 50.7% and 36.7% of its actual value in cases of partial and complete depletion, respectively. Additionally, the underestimation of ROD is highly dependent on the vascular density. To estimate ROD rate with 90% accuracy, temporal resolution on the order of milliseconds is required considering the uncertainty in parameters involved, especially, the diverse vascular density of the tissue.

CONCLUSION

The rapid recovery of O poses a great challenge for in vivo ROD measurements during FLASH RT. Temporal resolution on the order of milliseconds is recommended for ROD measurements in the normal tissue. Further work is warranted to investigate whether the same requirements apply to tumors, given their irregular vasculature.

摘要

目的

超高剂量率照射,又称 FLASH,已被证明可提高放射治疗(RT)的治疗比。该效应的部分机制可以用放射化学氧耗竭(ROD)假说来解释,该假说认为 ROD 诱导的短暂缺氧是正常组织保护的原因。为了更好地理解氧对 FLASH 效应的贡献,有必要在 FLASH 照射过程中体内测量氧(O )。本研究的目的是确定准确测量 FLASH 照射后立即快速变化的氧浓度所需的时间分辨率。

方法

我们使用来自公共荧光显微镜数据集构建的真实血管模型对氧动力学进行了计算模拟。考虑氧扩散、代谢和 ROD,通过偏微分方程(PDE)来模拟 FLASH RT 期间和之后的氧张力(p )的动态分布。在假设完全或部分耗竭的情况下,评估由于氧恢复而对 ROD 的低估,并对参数(如氧扩散、消耗、血管 p 和血管密度)的各种可能值进行评估。

结果

FLASH RT 后 O 浓度迅速恢复。假设时间分辨率为 0.5 s,在部分和完全耗竭的情况下,估计的 ROD 分别仅为其实际值的 50.7%和 36.7%。此外,ROD 的低估高度依赖于血管密度。考虑到所涉及参数的不确定性,特别是组织中不同的血管密度,为了以 90%的准确度估计 ROD 率,需要毫秒级的时间分辨率。需要进一步的工作来研究在肿瘤中是否需要相同的要求,因为它们的血管不规则。

结论

O 的快速恢复对 FLASH RT 过程中的体内 ROD 测量提出了巨大挑战。建议在正常组织中进行 ROD 测量时采用毫秒级的时间分辨率。鉴于肿瘤的不规则血管,需要进一步的工作来研究是否需要相同的要求。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验