Zachreson Cameron, Shearer Freya M, Price David J, Lydeamore Michael J, McVernon Jodie, McCaw James, Geard Nicholas
School of Computing and Information Systems, The University of Melbourne, Parkville, Victoria, Australia.
Melbourne School of Population and Global Health, The University of Melbourne, Carlton, Victoria, Australia.
Sci Adv. 2022 Apr 8;8(14):eabm3624. doi: 10.1126/sciadv.abm3624.
In controlling transmission of coronavirus disease 2019 (COVID-19), the effectiveness of border quarantine strategies is a key concern for jurisdictions in which the local prevalence of disease and immunity is low. In settings like this such as China, Australia, and New Zealand, rare outbreak events can lead to escalating epidemics and trigger the imposition of large-scale lockdown policies. Here, we develop and apply an individual-based model of COVID-19 to simulate case importation from managed quarantine under various vaccination scenarios. We then use the output of the individual-based model as input to a branching process model to assess community transmission risk. For parameters corresponding to the Delta variant, our results demonstrate that vaccination effectively counteracts the pathogen's increased infectiousness. To prevent outbreaks, heightened vaccination in border quarantine systems must be combined with mass vaccination. The ultimate success of these programs will depend sensitively on the efficacy of vaccines against viral transmission.
在控制2019冠状病毒病(COVID-19)传播方面,边境检疫策略的有效性是疾病和免疫力本地流行率较低的司法管辖区的一个关键关注点。在中国、澳大利亚和新西兰等这样的环境中,罕见的疫情爆发事件可能导致疫情升级,并引发大规模封锁政策的实施。在此,我们开发并应用了一个基于个体的COVID-19模型,以模拟在各种疫苗接种情况下从管理隔离中输入病例的情况。然后,我们将基于个体的模型输出作为分支过程模型的输入,以评估社区传播风险。对于与德尔塔变种相对应的参数,我们的结果表明,疫苗接种有效地抵消了病原体传染性的增加。为防止疫情爆发,边境检疫系统中加强疫苗接种必须与大规模疫苗接种相结合。这些计划的最终成功将敏感地取决于疫苗对病毒传播的效力。