Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA.
Angew Chem Int Ed Engl. 2022 Jun 13;61(24):e202203115. doi: 10.1002/anie.202203115. Epub 2022 Apr 25.
Metal-organic-framework nanoparticles (MOF NPs) have been increasingly used to encapsulate therapeutic enzymes for delivery. To better interface these MOF NPs with biological systems, researchers have coated them with natural cell membranes, enabling biomimicking properties suitable for innovative biomedical applications. Herein, we report that the enzymatic activity of cell-membrane-coated MOF NPs can be significantly enhanced by reducing membrane cholesterol content. We demonstrate such cholesterol-enzymatic activity correlation using zeolitic imidazolate framework-8 MOF NPs to encapsulate catalase, horseradish peroxidase, and organophosphate hydrolase, respectively. MOF NPs coated with membranes of human red blood cells or macrophages show similar outcomes, illustrating the broad applicability of this finding. The mechanistic investigation further reveals that reducing cholesterol levels effectively enhances membrane permeability likely responsible for the increased enzymatic activity. These results also imply a facile approach to tailoring the enzymatic activity of cell-membrane-coated MOF NPs by simply tuning the membrane cholesterol level.
金属有机骨架纳米粒子(MOF NPs)已被越来越多地用于包裹治疗性酶以进行递送。为了更好地将这些 MOF NPs 与生物系统相衔接,研究人员用天然细胞膜对其进行了包覆,从而赋予了具有创新性的生物医学应用所需的仿生特性。在此,我们报告称,通过降低膜胆固醇含量,可以显著增强细胞膜包覆的 MOF NPs 的酶活性。我们使用沸石咪唑酯骨架-8(ZIF-8)MOF NPs 分别包封过氧化氢酶、辣根过氧化物酶和有机磷水解酶,证明了这种胆固醇-酶活性的相关性。用人类红细胞或巨噬细胞膜包覆的 MOF NPs 也得到了类似的结果,说明了这一发现的广泛适用性。进一步的机制研究表明,降低胆固醇水平可以有效增强膜通透性,这可能是酶活性增强的原因。这些结果还表明,通过简单地调节膜胆固醇水平,可方便地调节细胞膜包覆的 MOF NPs 的酶活性。
Angew Chem Int Ed Engl. 2022-6-13
J Control Release. 2023-9
J Colloid Interface Sci. 2023-3-15
ACS Appl Mater Interfaces. 2020-9-16
Angew Chem Int Ed Engl. 2020-2-10
Adv Sci (Weinh). 2025-6
ACS Nano. 2024-11-5
Chem Bio Eng. 2024-2-8
Nanomaterials (Basel). 2024-2-23
Biomaterials. 2023-5